Discovery of (1S,2R,3R)-2,3-Dimethyl-2-phenyl-1sulfamidocyclopropanecarboxylates: Novel and Highly Selective Aggrecanase Inhibitors

Makoto Shiozaki, ${ }^{*,{ }^{\dagger}}$ Katsuya Maeda, ${ }^{+}$Tomoya Miura, ${ }^{+}$Masayuki Kotoku, ${ }^{+}$Takayuki Yamasaki, ${ }^{+}$ Isamu Matsuda, ${ }^{\dagger}$ Kenta Aoki, ${ }^{\dagger}$ Katsutaka Yasue, ${ }^{\dagger}$ Hiroto Imai, ${ }^{\dagger}$ Minoru Ubukata, ${ }^{+}$Akira Suma, ${ }^{\dagger}$ Masahiro Yokota, ${ }^{+}$Takahiro Hotta, ${ }^{\dagger}$ Masahiro Tanaka, ${ }^{+}$Yasunori Hase, ${ }^{\dagger}$ Julia Haas, ${ }^{\dagger}$ Andrew M. Fryer, ${ }^{\text {, }}$ Ellen R. Laird, ${ }^{\ddagger}$ Nicole M. Littmann, ${ }^{\ddagger}$ Steven W. Andrews, ${ }^{\ddagger}$ John A. Josey, ${ }^{\ddagger}$ Takayuki Mimura, ${ }^{\S}$ Yuichi Shinozaki, ${ }^{\S}$ Hiromi Yoshiuchi, ${ }^{\S}$ and Takashi Inaba ${ }^{*, t}$
${ }^{\dagger}$ Chemical Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
${ }^{\text {\# Array BioPharma Inc., }} 3200$ Walnut Street, Boulder, Colorado 80301, United States
${ }^{\S}$ Biological Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan

(S) Supporting Information

ABSTRACT:

Aggrecanases, particularly aggrecanase-1 (ADAMTS-4) and aggrecanase-2 (ADAMTS-5), are believed to be key enzymes involved in the articular cartilage breakdown that leads to osteoarthritis. Thus, aggrecanases are considered to be viable drug targets for the treatment of this debilitating disease. A series of ($1 S, 2 R, 3 R$)-2,3-dimethyl-2-phenyl-1-sulfamidocyclopropanecarboxylates was discovered to be potent, highly selective, and orally bioavailable aggrecanase inhibitors. These compounds have unique Pl^{\prime} groups comprising novel piperidine- or piperazine-based heterocycles that are connected to a cyclopropane amino acid scaffold via a sulfamido linkage. These P1' groups are quite effective in imparting selectivity over other MMPs, and this selectivity was further increased by incorporation of a methyl substituent in the 2-position of the cyclopropane ring. In contrast to classical hydroxamatebased inhibitors that tend to lack metabolic stability, our aggrecanase inhibitors bear a carboxylate zinc-binding group and have good oral bioavailability. Lead compound $\mathbf{1 3 b}$, characterized by the novel P1' portion of 1,2,3,4-tetrahydropyrido [3', $\left.\mathbf{4}^{\prime}: 4,5\right]$ imidazo $[1,2-a]$ pyridine ring, is a potent and selective aggrecanse inhibitor with excellent pharmacokinetic profiles.

INTRODUCTION

Osteoarthritis (OA) is a debilitating disease caused by breakdown of aggrecan and collagen in the articular cartilage, which leads to chronic joint pain and reduced physical function of a large population in the elderly. ${ }^{1}$ Current therapeutic options such as treatment with NSAIDs and intra-articular injections of hyaluronic acid only offer temporary symptomatic relief such as pain reduction but rarely halt the progression of the disease. Since OA affects millions of people all over the world and its incidence is increasing with the aging of the population, new
therapeutic agents for the treatment of cartilage degradation are of great interest. In 1999, two zinc metalloproteases, aggreca-nase-1 (ADAMTS-4) and aggrecanase-2 (ADAMTS-5), were identified as the major enzymes responsible for aggrecan cleavage at the $\mathrm{Glu}^{373}-\mathrm{Ala}^{374}$ site. ${ }^{2}$ These proteases cleave aggrecan at this site 1000 -fold more efficiently than any other matrix metalloproteases (MMPs). This finding drew a great deal of interest

[^0]

Figure 1. Examples of ADAMTS-5 inhibitors.
because the aggrecan fragments generated from cleavage at this site are found in the synovial fluid of OA patients, which suggests that aggrecanases play a pivotal role in the pathological catabolism of aggrecan. ${ }^{3}$ In osteoarthritic cartilage, degradation of aggrecan is initially observed and is followed by substantial and irreversible collagen breakdown, which leads to structural damage of the joints. ${ }^{4}$ Thus, blockade of aggrecanases is currently expected to prevent aggrecan degradation and could eventually protect the joints of OA patients. ${ }^{5}$ Of the two enzymes, aggre-canase- 2 was demonstrated to play a pivotal role in the cleavage of mouse cartilage based on studies using knockout animals, ${ }^{6}$ and there have been several reports that suggest that either enzyme could be a major player in the destruction of the cartilage of OA patients. ${ }^{7}$ Initially, several general aggrecanase inhibitors as represented by DuPont's hydroxamate-based compound $\mathbf{1}^{8 a}$ were reported (Figure 1). ${ }^{9}$ The inhibitory activity of compound 1 against each aggrecanase was also reported. ${ }^{\text {bb }}$ Subsequently, the knockout mouse studies ${ }^{6}$ inspired the design of aggrecanase-2 inhibitors. ${ }^{10}$ In particular, Wyeth reported a variety of aggreca-nase-2 inhibitors exemplified by 2 . Most recently, Cappelli and co-workers reported aggrecanase inhibitors such as 3 that showed submicromolar IC_{50} values for both aggrecanase-1 and $-2 .{ }^{11}$ Similarly, Pfizer's MMP-13 inhibitor (4) ${ }^{\text {ee }}$ showed strong aggrecanse inhibitory activity, while Wyeth's carboxy-late-based compound $(5)^{9 g}$ selectively inhibited aggrecanases.

Recently we have reported aggrecanase- 2 inhibitors such as 6 that bear a carboxylate zinc-binding group. ${ }^{12}$ While 6 was the most potent compound of these non-hydroxamate inhibitors against aggrecanase-1 and - 2 , it also inhibited other MMPs such as MMP-3, MMP-9, MMP-13, and MMP-14 in a broad-range selectivity panel. It is widely believed that a variety of unacceptable adverse events, such as musculoskeletal syndrome, ${ }^{13}$ that have been clinically observed with the use of broad spectrum

MMP inhibitors arose from lack of selectivity. Hence, we undertook the optimization of compound $\mathbf{6}$ in order to identify highly selective aggrecanase inhibitors, especially inhibitors of aggreca-nase-2.

MMP-14 has been implicated as a possible cause of side effects based on knockout mouse studies. ${ }^{14}$ Because the inhibitory activity of $\mathbf{6}$ against MMP-14 was twice as strong as that against aggrecanase-2, an MMP-14 assay was newly employed in addition to the original selectivity assay system which also included MMP-1 and tumor necrosis factor α-converting enzyme (TACE). ${ }^{15}$ The earlier gene knockout studies indicated that inhibition of aggrecanase- 2 is more important in mice, and thus, the inhibition of aggrecanase-1 was expected to cause no severe side effects based on the phenotype of aggrecanase-1 knockout mice, ${ }^{6}$ and its inhibition may even exert some positive effects in vivo. Therefore, in this study we followed only aggrecanase-2 inhibitory activity and did not routinely monitor aggrecanase-1 inhibitory activity.

■ RESULTS AND DISCUSSION

Initial SAR Exploration of Close Sulfonamide-Based Analogues of Compound 6. Zinc metalloproteases including MMPs contain highly conserved structural features within the catalytic domain, with the exception of the loop region which forms part of the $\mathrm{S1}^{\prime}$ pocket of each enzyme and imparts substrate specificity. Therefore, generating P1 moieties that specifically interact with the $\mathrm{S1}^{\prime}$ pocket of each target MMP may be a key for the development of more selective inhibitors. ${ }^{16}$ We therefore initiated an exploration of inhibitor binding to the $\mathrm{S1}^{\prime}$ pocket starting from compound $\mathbf{6}$, whose sulfonyl moiety is accommodated in the $\mathrm{S1}^{\prime}$ pocket of aggrecanase-2. ${ }^{12 \mathrm{~b}}$ First, we examined the effects of substitutions on the two consecutive pyrazole and thiophene rings (Table 1). The compounds were tested in vitro on human recombinant aggrecanase-2, MMPs, and TACE, which used a fluorogenic peptide as the substrate. Introduction of an additional methyl group on the thiophene ring resulted in complete loss of potency ($7 \mathbf{a}$), while replacement of the terminal chlorine atom with a methoxy or a methyl group led to a slight reduction of selectivity over MMP-14 (7b, 7c). Although these minor modifications on the present ring system had virtually no beneficial effect on aggrecanase-2 selectivity over MMP-14, relatively high selectivity over MMP-1 was observed for $7 \mathbf{d},{ }^{12 b}$ a phenyl analogue of compound 6 . This analogue became the focus of additional efforts to impart selectivity over MMP-14.

Discovery of Tricyclic Sulfonamides as P1' Groups. Among the close analogues of 6 listed in Table 1, only 7a showed a significant reduction of aggrecanase-2 potency. We considered that the introduction of the methyl group forces the linked heterocycle of 7a to lose coplanarity, a distortion of the geometry that causes steric congestion in the aggrecanase- $2 \mathrm{S1}^{\prime}$ pocket and leads to the observed loss of potency. On the basis of this hypothesis, we synthesized $\mathbf{8 a - c}$ as analogues of 7 d which bear flat tricyclic structures as the Pl^{\prime} moiety (Table 2). Analogues 8a-c retained good aggrecanase-2 potency, and moreover, 8c showed good selectivity over MMP-1. Unfortunately the selectivity over MMP-14 was still unsatisfactory (Table 2). Compounds $8 \mathbf{d}$ and 8 e were subsequently synthesized to evaluate the effect of the terminal chlorine atom, but these compounds offered no improvement in selectivity over MMP-14.

Table 1. SAR of Sulfonamide-Based P1 ${ }^{\prime}$ Portion of Close Analogues of $\boldsymbol{6}^{f}$

${ }^{a}$ See Experimental Section for assay protocols. The IC_{50} values are the average of at least two determinations with a standard deviation of $<30 \%$.
${ }^{b}$ Reference compound 1 gave mean $(\pm \mathrm{SEM}) \mathrm{IC}_{50}=12(\pm 0.60) \mathrm{nM}, n=30 .{ }^{c}$ Reference compound 1 gave $\mathrm{IC}_{50}>10 \mu \mathrm{M}, n=18$. ${ }^{d}$ Reference compound 1 gave $\mathrm{IC}_{50}>10 \mu \mathrm{M}, n=16 .{ }^{e}$ Reference compound 1 gave mean $(\pm \mathrm{SEM}) \mathrm{IC}_{50}=430(\pm 43) \mathrm{nM}, n=13 .{ }^{f}$ nd: not determined.

Discovery and Initial Exploration of Sulfamide-Based P1' Groups. We next evaluated sulfamides as bioisosteric replacements of the sulfonamide group to introduce greater synthetic versatility. ${ }^{17} \mathrm{We}$ initially synthesized $\mathbf{9 a}$ and $\mathbf{9 b}$, and although these compounds showed reduced aggrecanase-2 potency compared to the sulfonamide series, their selectivities over MMP-14, MMP-1, and TACE were comparable to that of the most selective sulfonamide 8c. These results prompted us to modify the piperazine ring of 9 a . Substitution of a methyl group as in 9c and 9d provided a 2 -fold increase in aggrecanase-2 inhibitory activity and a surprising 10 -fold increase in selectivity with respect to MMP-14. These results were in contrast to the loss of potency in compound 7a, which also has a methyl substituent at the corresponding location of the $\mathrm{P} 1^{\prime}$ site but showed no aggrecanase- 2 inhibition. Maity et al. have recently reported a crystal structure of a 2 -substituted-1-phenylpiperazine derivative. ${ }^{18}$ They reported that in similar systems the piperazine ring was coplanar with the phenyl ring, and this coplanar conformation forced the alkyl substituent at the 2-position of the piperazine into the axial orientation. On the basis of this observation, we postulated that the phenylpiperazine moieties of 9 c and 9 d adopt a similar coplanar conformation so that they can fit in the $S 1^{\prime}$ pocket of aggrecanase-2
without the steric congestion of 7 a and thus retain their good inhibitory activity. To explain the improved selectivity of the sulfamides, we compared the binding of 9 c and 9 d in the crystal structures of aggrecanase- $2{ }^{19}$ and MMP-14. ${ }^{20}$ These two protein X-ray structures were superimposed by aligning the $\mathrm{C} \alpha$ atoms, and 9 c and 9 d were docked manually into the resulting protein structures with the carboxylate acting as a zinc-binding group and the phenylpiperazine moiety positioned in the $S 1^{\prime}$ pocket. As seen in Figure 2, the most striking difference between aggrecanase-2 and MMP-14 is the chemical environment around the piperazine ring of the inhibitors: the backbone carbonyl of Pro 259 comes too close to the methyl substituent of 9 c and 9 d in the $\mathrm{S1}^{\prime}$ pocket of MMP-14, while the corresponding amino acid of aggrecanase-2, Ser441, projects away from the methyl substituent (Figure 2a and Figure 2b). Thus, the available space near the piperazine ring in the $S 1^{\prime}$ pocket of aggrecanase- 2 could account for the aggrecanase- 2 selectivity found in 9c and 9d. Recently, Wei et al. have reported a similar modulation of selectivity in their MMP-12 inhibitor program. ${ }^{21}$ This approach of introducing differences in the S1' pocket that are more subtle than simply changing the depth represents a novel and attractive strategy for obtaining highly selective MMP inhibitors. To exploit this approach further, we prepared

Table 2. SAR of the P1 1^{\prime} Portion Comprising Novel Tricyclic Heteroaromatics
O-

${ }^{a}$ See Experimental Section for assay protocols. The IC_{50} values are the average of at least two determinations with a standard deviation of $<30 \%$.
${ }^{b}$ Reference compound 1 gave mean $(\pm$ SEM $) \mathrm{IC}_{50}=12(\pm 0.60) \mathrm{nM}, n=30$. ${ }^{c}$ Reference compound 1 gave $\mathrm{IC}_{50}>10 \mu \mathrm{M}, n=18$. ${ }^{d}$ Reference compound 1 gave $\mathrm{IC}_{50}>10 \mu \mathrm{M}, n=16 .{ }^{e}$ Reference compound 1 gave mean $(\pm$ SEM $) \mathrm{IC}_{50}=430(\pm 43) \mathrm{nM}, n=13$.

Figure 2. Compounds (a) 9 c and (b) 9 d harbored in the catalytic pockets of aggrecanase-2 and MMP-14. The compounds are depicted in white. Aggrecanase-2 is depicted in green. MMP-14 is depicted in pink, and zinc ion is portrayed as a yellow sphere. The backbone carbonyl of Pro259 (pink arrow) comes too close to the methyl substituent (white dashed circle) of 9 c and 9 d in the $\mathrm{S1}^{\prime}$ pocket of MMP-14, while the corresponding amino acid of aggrecanase-2, Ser441 (green arrow), projects away from the methyl substituent.
an additional small set of substituted piperazines including a 3-ethyl analogue (9e), a 3,3-dimethyl analogue (9f), and a 3-hydroxymethyl
analogue (9 g) (Table 3). Unfortunately, these compounds showed neither increased aggrecanase-2 potency nor improved

Table 3. SAR of the P1' Portion Comprising 4-Chlorophenylpiperazines and 4-Chlorophenylpiperidine Sulfamides ${ }^{f}$

${ }^{a}$ See Experimental Section for assay protocols. The IC_{50} values are the average of at least two determinations with a standard deviation of $<30 \%$.
${ }^{b}$ Reference compound 1 gave mean $(\pm$ SEM $) \mathrm{IC}_{50}=12(\pm 0.60) \mathrm{nM}, n=30{ }^{c}$ Reference compound 1 gave $\mathrm{IC}_{50}>10 \mu \mathrm{M}, n=18$. ${ }^{d}$ Reference compound 1 gave $\mathrm{IC}_{50}>10 \mu \mathrm{M}, n=16 .{ }^{e}$ Reference compound 1 gave mean $(\pm$ SEM $) \mathrm{IC}_{50}=430(\pm 43) \mathrm{nM}, n=13 .{ }^{f}$ nd: not determined.
selectivity. Therefore, we concluded that this region of the $\mathrm{S}^{\prime}{ }^{\prime}$ pocket is too small to accommodate substituents larger than methyl.

As no further improvement in selectivity was achieved by modification of the piperazine ring, we next focused on the distal benzene portion starting from 9 c . Although simple replacement of the terminal chlorine atom with a smaller fluorine atom (10a) or a larger cyclopropane ring ($\mathbf{1 0 b}$) resulted in reduction of potency, substitution of phenyl with a five-membered heterocycle ($\mathbf{1 0 c} \mathbf{- f}$) gave some encouraging results. Most notably, 10d was not only as potent as 9 c but also showed a significantly higher selectivity over MMP-14 (200fold). This compound also did not inhibit MMP-1 or TACE at $>10 \mu \mathrm{M}$.

Discovery of Tricyclic Sulfamide P1' Groups. In the aforementioned SAR investigations of the sulfonamide series, aggre-canase-2 inhibitory activity was significantly improved by incorporating tricycle-based Pl^{\prime} groups represented by the 4 H thieno $[3,2-b]$ indole- 2 -yl core of compound 8 c . These findings encouraged us to prepare compounds that possess Pl^{\prime} groups comprising tricyclic sulfamides as homologues of $\mathbf{9 a}$ and $\mathbf{9 b}$ (Table 5). Unfortunately, we found no significant improvements in aggrecanase-2 inhibitory activity or selectivity against MMP14 in the initial small set of tricyclic sulfamides with a fusedpiperazine core ($\mathbf{1 1 a}, \mathbf{b}, \mathbf{d}$), a fused-piperidine core (11c), and a fused-pyrrolidine core (11e). Thus, we next investigated the

Table 4. SAR of the P1 ${ }^{\prime}$ Portion Comprising (R)-4-Substituted 3-Methylpiperazines ${ }^{f}$

${ }^{a}$ See Experimental Section for assay protocols. The IC_{50} values are the average of at least two determinations with a standard deviation of $<30 \%$.
${ }^{b}$ Reference compound 1 gave mean $(\pm$ SEM $) \mathrm{IC}_{50}=12(\pm 0.60) \mathrm{nM}, n=30 .{ }^{c}$ Reference compound 1 gave $\mathrm{IC}_{50}>10 \mu \mathrm{M}, n=18$. ${ }^{d}$ Reference compound 1 gave $\mathrm{IC}_{50}>10 \mu \mathrm{M}, n=16 .{ }^{e}$ Reference compound 1 gave mean $(\pm$ SEM $) \mathrm{IC}_{50}=430(\pm 43) \mathrm{nM}, n=13$. ${ }^{f}$ nd: not determined.

Figure 3. Compound $\mathbf{1 2 b}$ (in white) is harbored in the catalytic pockets of aggrecanase-2 and MMP-14. Aggrecanase-2 is depicted in green. MMP-14 is depicted in pink, and the zinc ion is portrayed as a yellow sphere. The backbone carbonyl of Pro259 (pink arrow) comes too close to the basic nitrogen atom (white dashed circle) of $\mathbf{1 2 b}$ in the $\mathrm{S1}^{\prime}$ pocket of MMP-14, while the corresponding amino acid of aggrecanase-2, Ser441 (green arrow), projects away from the nitrogen atom.
effect of substituents on the terminal ring starting from 11b, which has a chlorine atom at the 8 -position (Table 6). Deletion of the chlorine atom of $\mathbf{1 1 b}$ resulted in a slight reduction of aggrecanase-2 potency (12a), while 12b, possessing a fluorine atom at this position, retained both the potency against aggre-canase-2 and good selectivity over MMP-14. The regioisomer 12c, having a fluorine atom at the 7 -position, was a nonselective compound with reduced aggrecanase- 2 inhibition and increased MMP-14 inhibition compared to the 8-F isomer 12b. According to our previous SAR investigation, ${ }^{12 \mathrm{~b}} 6$ - and 9 -substituted regioisomers were unlikely to show good potency. Therefore, only the 8 -position of the tricyclic structure was further investigated, and small substituents such as cyano, methyl, and methoxy groups were introduced at this position (12d, 12e, and 12f, respectively). As listed in Table 6, these compounds are more than 10 -fold less potent than $\mathbf{1 2 b}$ against aggrecanase-2. Thus, the presence of a halogen atom at the 8-position of the tricyclic system appears to be important to boost aggrecanase-2 inhibition. As expected, the other heterotricycles $\mathbf{1 2 g} \mathbf{- i}$ with a fluorine

Table 5. Initial SAR of the P1 ${ }^{\prime}$ Portion Comprised of Heterotricycle-Based Sulfamides

compd	R	$\mathrm{IC}_{50}(\mu \mathrm{M})^{a}$			
		Agg- $2^{\text {b }}$	MMP-14 ${ }^{\text {c }}$	MMP-1 ${ }^{\text {d }}$	TACE ${ }^{e}$
11a		0.039	0.42	>10	>10
11b		0.060	0.61	>10	>10
11c		0.021	0.27	>10	>10
11d		0.11	2.3	>10	>10
11e		0.066	0.28	3.7	>10

${ }^{a}$ See Experimental Section for assay protocols. The IC_{50} values are the average of at least two determinations with a standard deviation of $<30 \%$.
${ }^{b}$ Reference compound 1 gave mean $(\pm \mathrm{SEM}) \mathrm{IC}_{50}=12(\pm 0.60) \mathrm{nM}, n=30 .{ }^{c}$ Reference compound 1 gave $\mathrm{IC}_{50}>10 \mu \mathrm{M}, n=18$. ${ }^{d}$ Reference compound 1 gave $\mathrm{IC}_{50}>10 \mu \mathrm{M}, n=16 .{ }^{e}$ Reference compound 1 gave mean $(\pm$ SEM $) \mathrm{IC}_{50}=430(\pm 43) \mathrm{nM}, n=13$.

Figure 4. Compound 13a (in white) in the catalytic pockets of aggrecanase-2 and MMP-14. Aggrecanase-2 is depicted in green. MMP-14 is depicted in pink, and the zinc ion is portrayed as a yellow sphere. The 2-methyl substituent on the cyclopropane ring of 13a comes too close to Phe 198 (pink arrow) of MMP-14, causing a steric repulsion. Meanwhile, the corresponding residue of aggrecanase-2 is Thr378 (green arrow), which allows enough space to accommodate the 2 -methyl group.
atom at the corresponding position in $\mathbf{1 2 b}$ were as potent as $\mathbf{1 2 b}$, supporting the importance of a halogen atom at this position. As for the selectivity over MMP-14, positioning a basic nitrogen atom in the middle of the P^{\prime} portion appeared to be a key to reducing MMP-14 inhibition: the IC_{50} values of the two basic imidazole analogues $\mathbf{1 2 b}$ and $\mathbf{1 2 g}$ are much higher than those of the less basic pyrazole and pyrrole counterparts $\mathbf{1 2 h}$ and $\mathbf{1 2 i}$. On the basis of the docking studies depicted in Figure 3, perhaps the presence of a basic nitrogen atom in the middle of the $\mathrm{P} 1^{\prime}$ portion of the inhibitor causes electrostatic repulsion with the backbone carbonyl oxygen of Pro259 in MMP-14, resulting in reduced MMP-14 potency. In aggrecanase-2, the corresponding amino acid Ser441 located in this position appears to cause no such repulsion so that all of these compounds showed similar potencies against aggrecanase-2.

Effects of Substitutions on the Cyclopropane Ring. In our earlier paper, we reported 2-methyl-2-phenylcyclopropane as an attractive scaffold although its aggrecanase-2 inhibitory activity was slightly weaker than the corresponding 3-methyl derivatives. ${ }^{12 \mathrm{~b}}$ To determine whether there are any combined effects of 2-methyl

Table 6. Effects of Substitutions on the Terminal Ring of $\mathrm{P} 1^{\prime}$ Portion of Heterotricycle-Based Sulfamides

compd	R	$\mathrm{IC}_{50}(\mu \mathrm{M})^{a}$			
		Agg-2 ${ }^{\text {b }}$	MMP-14 ${ }^{\text {c }}$	MMP-1 ${ }^{d}$	TACE ${ }^{e}$
12a		0.092	2.2	>10	>10
12b		0.020	1.1	>10	>10
12c		0.10	0.24	>10	>10
12d		0.25	4.9	>10	>10
12e		0.32	0.90	>10	>10
12f		0.33	4.3	>10	>10
12g		0.017	2.1	>10	6.3
12h		0.0086	0.14	4.2	>10
12i		0.038	0.098	2.3	>10

${ }^{a}$ See Experimental Section for assay protocols. The IC_{50} values are the average of at least two determinations with a standard deviation of $<30 \%$.
${ }^{b}$ Reference compound 1 gave mean $(\pm$ SEM $) \mathrm{IC}_{50}=12(\pm 0.60) \mathrm{nM}, n=30 .{ }^{c}$ Reference compound 1 gave $\mathrm{IC}_{50}>10 \mu \mathrm{M}, n=18$. ${ }^{d}$ Reference compound 1 gave $\mathrm{IC}_{50}>10 \mu \mathrm{M}, n=16 .{ }^{e}$ Reference compound $\mathbf{1}$ gave mean $(\pm$ SEM $) \mathrm{IC}_{50}=430(\pm 43) \mathrm{nM}, n=13$.
and 3-methyl substituents on the cyclopropane ring, 13a and 13b were synthesized as 2,3 -dimethyl analogues of $\mathbf{1 2 b}$ and $\mathbf{1 2 g}$, respectively. Fortunately, significant improvement of aggrecanase-2 selectivity over MMP-14 was observed and these compounds displayed
IC_{50} values of $>10 \mu \mathrm{M}$ against all other zinc metalloproteases in Table 7, including MMP-14, MMP-1, and TACE. The aggrecanase-2 inhibitory activity of $\mathbf{1 3}$ a and $\mathbf{1 3 b}$ exceeded that of $\mathbf{1 2 b}$ and $\mathbf{1 2 g}$, respectively, and a more than 10 -fold improvement of selectivity

Table 7. SAR of the P1' Portion of 1-Amino-2,3-dimethyl-2-phenylcycloprapanecarboxylates

${ }^{a}$ See Experimental Section for assay protocols. The IC_{50} values are the average of at least two determinations with a standard deviation of $<30 \%$.
${ }^{b}$ Reference compound 1 gave mean $(\pm \mathrm{SEM}) \mathrm{IC}_{50}=12(\pm 0.60) \mathrm{nM}, n=30 .{ }^{c}$ Reference compound 1 gave $\mathrm{IC}_{50}>10 \mu \mathrm{M}, n=18$. ${ }^{d}$ Reference compound 1 gave $\mathrm{IC}_{50}>10 \mu \mathrm{M}, n=16 .{ }^{e}$ Reference compound 1 gave mean $(\pm \mathrm{SEM}) \mathrm{IC}_{50}=430(\pm 43) \mathrm{nM}, n=13$.
over MMP-14 was finally achieved. This improvement in selectivity could also be rationalized by means of the docking model as shown in Figure 4. The newly introduced 2-methyl substituent on the cyclopropane ring comes too close to Phe198 of MMP-14, causing a steric repulsion. Meanwhile, the corresponding residue of aggrecanase-2 is Thr378, which allows enough space to accommodate the 2-methyl group. Interestingly, this strong substitution effect on the selectivity was also seen in other $\mathrm{P1}^{\prime}$ analogues: introduction of a methyl group in the 2 -position of $10 \mathrm{c}, 10 \mathrm{~d}$, and 12 h afforded $13 \mathrm{~d}, 13 \mathrm{e}$, and 13 c , respectively, with a great improvement of aggrecanase-2 selectivity over MMP-14.

Pharmacokinetic (PK) and Selectivity Profiles of Representative Compounds. To assess the PK profile of this series of compounds, we focused on several of the compounds 13 listed in Table 7. Sprague-Dawley rats were used in these experiments, and each compound $(10 \mathrm{mg} / \mathrm{kg})$ was administered as a solution in Solutol/ethanol/ $\mathrm{H}_{2} \mathrm{O}=4: 1: 5$. As shown in Table 8, 13b showed the best oral bioavailability with an AUC of $421.0 \mu \mathrm{M} \cdot \mathrm{h}$ and having a low clearance of $0.06 \mu \mathrm{M} \cdot \mathrm{h}$. All the compounds showed no CYP inhibition up to $50 \mu \mathrm{M}$ (3A4, 2C9, 2D6, 1A2, 2A6, and 2C19). Most strikingly, 13b showed excellent
aggrecanase selectivity over six other members of the Zn metalloproteases (MMP-1, MMP-3, MMP-9, MMP-13, MMP14, and TACE, Table 9).

Chemistry. Sulfonamide-based aggrecanase-2 inhibitors (Tables 1 and 2) were synthesized as shown in Scheme 1. Amine $14^{12 \mathrm{~b}}$ was coupled with an appropriate sulfonyl chloride such as 16a-c and 21, and subsequent acidic cleavage of the t-Bu ester gave the targeted compounds $7 \mathbf{a}-\mathbf{c}$ and $8 \mathbf{a}$. $\mathbf{1 6 a}-\mathbf{c}$ were synthesized from $15 a-\mathbf{c}^{22}$ using the procedure described for preparation of 6 and $7 \mathrm{~d} .{ }^{12 \mathrm{~b}} 21$ was synthesized by the following steps: coupling of $\mathbf{1 7}$ with 2 -amino- 4 -chloropyridine, regioselective bromination of the resultant 18 followed by saponification to 19, condensation of 19 with ethyl thioglycolate, subsequent saponification to 20 , and decarboxylation in the presence of copper catalyst followed by chlorosulfonylation. In contrast, tricyclic $\mathrm{P1}^{\prime}$ portions of $\mathbf{8 b}-\mathbf{e}$ were constructed after sulfonamide bond formation since no examples of chlorosulfonylation of these tricycles were known. Thus, 22 and 24, obtained by a coupling reaction of 14 with the corresponding sulfonyl chloride, were first coupled with appropriate arylmetal species to give 23 and $\mathbf{2 5 a} \mathbf{- c}$, respectively. The tricyclic systems were constructed

Table 8. Pharmacokinetics Data for Selected Aggrecanase-2 Inhibitors

compd	$\mathrm{iv}^{a}(\mathrm{mg} / \mathrm{kg})$	$\mathrm{Vd}_{\mathrm{ss}}(\mathrm{L} / \mathrm{kg})$	$\mathrm{CL}((\mathrm{L} / \mathrm{h}) / \mathrm{kg})$	$\mathrm{po}^{b}(\mathrm{mg} / \mathrm{kg})$	$T_{1 / 2}(\mathrm{~h})$	$C_{\max }(\mu \mathrm{M})$	$\mathrm{AUC}(\mu \mathrm{M} \cdot \mathrm{h})$	$F(\%)$
13a	1	0.70	0.60	10	2.0	17.4	76.9	421.0
13b	1	0.25	0.06	10	4.0	54.1	196	
13d	1	2.6	0.29	10	4.5	15.9	103	
13e	1	1.9	0.70	10	1.9	4.9	119	

${ }^{a}$ Administered intravenously at 1 mg per $0.5 \mathrm{~mL} / \mathrm{kg}$ in a solution of Solutol/ethanol $/ \mathrm{H}_{2} \mathrm{O}=4: 1: 5$. ${ }^{b}$ Administered orally by gavage at 10 mg per $5 \mathrm{~mL} / \mathrm{kg}$ in a solution of Solutol/ethanol/ $\mathrm{H}_{2} \mathrm{O}=4: 1: 5$.

Table 9. Selectivity Profiles of Compounds 6 and 13b

compd	$\mathrm{IC}_{50}(\mu \mathrm{M})^{a}$							
	aggrecanase		MMP					TACE
	1	2	1	3	9	13	14	
6	0.0040	0.0074	0.18	0.068	0.058	0.0034	0.0039	4.0
13b	0.023	0.0084	>10	9.6	>10	>10	>10	>10

${ }^{a}$ See Experimental Section for assay protocols. The IC_{50} values are the average of at least two determinations with a standard deviation of $<30 \%$.
via active nitrene intermediates generated by reduction of 23 and $\mathbf{2 5 a} \mathbf{- c}$ with $\mathrm{P}(\mathrm{OEt})_{3}$. The final acidic ester cleavage of the thus obtained products gave $\mathbf{8 b}-\mathbf{e}$. There have been few reports of syntheses of these kinds of highly constrained heterocycles, and we found this reductive cyclization through the nitrene intermediate to be one of the best options to synthesize such complex molecules of biological interest. ${ }^{23}$

The sulfamide-based compounds listed in Tables 3 and 4 were synthesized as described in our previous work: ${ }^{12 b}$ coupling reaction of 26 with appropriate amines ${ }^{24}$ and subsequent deprotection gave targeted compounds $\mathbf{9 a}-\mathbf{g}$ and 10a-f. The novel amines for the synthesis of $\mathbf{9 g}$ and $\mathbf{1 0 b}-\mathbf{f}$ were prepared as shown in Scheme 2. N-Arylation of 27^{25} with aryl bromides was performed by applying a typical Buchwald protocol to obtain $\mathbf{2 8 a}-\mathrm{c}$. $\mathbf{2 8} \mathrm{c}$ was further transformed to $\mathbf{2 8 d}$ by bromination and subsequent Suzuki-coupling. As for isoxazole-substituted piperazines, 3-bromoisoxazole 31a-c were initially prepared by 1,3dipolar cycloaddition of $\mathbf{2 9}$ a or $\mathbf{2 9 b}$ with 1,1-dibromoformaldoxime and by fluorination of known ketone $30,{ }^{26}$ respectively. Thus obtained 31a-c were methylated to form quaternary salts by the action of MeOTf to increase their electrophilicity. ${ }^{27}$ They were subsequently coupled with $\mathbf{2 7 b}$ followed by a reductive demethylation ${ }^{28}$ to obtain 32a, 32b, and 32d. 32b was further transformed to 32c via hydrolysis, oxidation and fluorination. Deprotection of the thus obtained Boc-protected amines with HCl then afforded $\mathbf{3 3} \mathbf{a}-\mathbf{f}$, which were ready for coupling with 26.

The compounds listed in Tables 5 and 6 were synthesized in an analogous manner. The amines for the synthesis of $\mathbf{1 1 a}, \mathbf{1 1 b}$, $\mathbf{1 2 a} \mathbf{- f}$, and $\mathbf{1 2 i}$ were prepared following known procedures, ${ }^{29}$ while the amines for $\mathbf{1 1 c} \mathbf{c}, \mathbf{1 2 g}$, and $\mathbf{1 2 h}$ were prepared as shown in Scheme 3. The most challenging step in the synthesis of these novel tricyclic amines, including 38a, 38b, 43, 46, and 51, was thought to be the construction of the aromatic bicycle; therefore, we planned to prepare the aromatic part prior to the cyclization step that would lead to the aliphatic amine moieties. The imidazo [1,2-a] pyridine core for 38 was constructed by the reaction of 34 and 3-bromo-2-oxopentanedioic acid dimethyl

Scheme 1^{a}

${ }^{a}$ Reagents and conditions: (a) (i) $\mathrm{ArSO}_{2} \mathrm{Cl}$, pyridine; (ii) $\mathrm{HCl} / 1,4-$ dioxane; (b) (i) 2-bromothiophene or 2-bromo-3-methylthiophene, $\mathrm{Cu}_{2} \mathrm{O}$, salicylaldoxime, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, DMA, $150^{\circ} \mathrm{C}$; (ii) $\mathrm{ClSO}_{3} \mathrm{H}, 70^{\circ} \mathrm{C}$; (c) (i) 2-amino-4-chloropyridine, DME; (ii) $\mathrm{EtOH}, 80^{\circ} \mathrm{C}$; (d) (i) NBS, $\mathrm{CH}_{3} \mathrm{CN}$; (ii) $\mathrm{CaCO}_{3}, \mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}, 100^{\circ} \mathrm{C}$; (e) (i) ethyl thioglycolate, $\mathrm{NaO}-t-\mathrm{Bu}, \mathrm{EtOH}, 100^{\circ} \mathrm{C}$; (ii) $4 \mathrm{M} \mathrm{NaOH}, 100^{\circ} \mathrm{C}$; (f) (i) $\mathrm{Cu}_{2} \mathrm{O}$, quinoline, $200{ }^{\circ} \mathrm{C}$; (ii) $\mathrm{ClSO}_{3} \mathrm{H}, 80^{\circ} \mathrm{C}$; (g) 5-chloro-2-trimethylstannanylpyridine, $\mathrm{PdClBn}\left(\mathrm{PPh}_{3}\right)_{2}$, toluene, $120^{\circ} \mathrm{C}$; (h) 2-(4- or 5-halo-2-nitrophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane, PdCl_{2} (dppf) $\cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}, 2 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$, DME, $100^{\circ} \mathrm{C}$; (i) (i) $\mathrm{P}(\mathrm{OEt})_{3}$, mesitylene, $150{ }^{\circ} \mathrm{C}$; (ii) $\mathrm{HCl} / 1,4$-dioxane.

Scheme 2^{a}

${ }^{a}$ Reagents and conditions: (a) (i) $\mathrm{R}^{1} \mathrm{R}^{2} \mathrm{NH} \cdot n \mathrm{HCl}, \mathrm{NMM}, 1,4$-dioxane, $10{ }^{\circ} \mathrm{C}$; (ii) $\mathrm{HCl} / 1,4$-dioxane or TBAF, THF then $\mathrm{HCl} / 1,4$-dioxane; (b) $\mathrm{ArBr}, \mathrm{NaO}-t-\mathrm{Bu}, \mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{P}(t-\mathrm{Bu})_{3}$, toluene, $110^{\circ} \mathrm{C}$; (c) (i) n $\mathrm{Bu}_{4} \mathrm{~N} \cdot \mathrm{Br}_{3}, \mathrm{CHCl}_{3}$; (ii) cyclopropylboronic acid, $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{PCy}_{3}$, $\mathrm{K}_{3} \mathrm{PO}_{4}$, toluene $/ \mathrm{H}_{2} \mathrm{O}, 110^{\circ} \mathrm{C}$; (d) 1,1-dibromoformaldoxime, KHCO_{3}, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 40^{\circ} \mathrm{C}$; (e) bis(2-methoxyethyl)aminosulfur trifluoride, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 45^{\circ} \mathrm{C}$; (f) (i) MeOTf, $80^{\circ} \mathrm{C}$; (ii) 27b, methanol; (iii) $\mathrm{Ph}_{3} \mathrm{P}$, DMF, $130^{\circ} \mathrm{C}$; (g) (i) 1 M NaOH , ethanol, $80^{\circ} \mathrm{C}$; (ii) Dess-Martin periodinane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (iii) bis(2-methoxyethyl)aminosulfur trifluoride, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (h) $\mathrm{HCl} / 1,4$-dioxane.
ester. Thus, the obtained 35 was reduced with excess DIBAL-H to diol 36, which was directly transformed to 37 by DPPA treatment. Fortunately, compound 37, obtained by these simple reactions, had a masked nucleophilic nitrogen atom as well as a phosphate leaving group and was ready to cyclize to the piperidine. As expected, reduction of 37 with PPh_{3} gave the desired 38 in good yield. Reaction of 34 a with 2-chloro-3oxosuccinic acid diethyl ester gave the imidazo[1,2-a]pyridine core for 43. One of the two ester groups of the resultant diester 39 was selectively reduced in a chelation-controlled manner to an aldehyde, ${ }^{30}$ which was further reduced with NaBH_{4} to obtain 40. After THP protection of $\mathbf{4 0}$, the other ester group was reduced by LAH to give 41, converted to an azide by DPPA treatment,

Figure 5. X-ray structure of ($1 S, 2 R, 3 R$)-1-tert-butoxycarbonylamino-2,3-dimethyl-2-phenylcyclopropanecarboxylic acid quinidine salt 57. Atomic ellipsoids are drawn at the 50% probability level, and the Flack parameter is refined to $-0.2(5)$. CCDC 810738 contains the supplementary crystallographic data for 57 (available free of charge at The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/ data_request/cif).
reduced to an amine with phosphine, and protected with $\mathrm{Boc}_{2} \mathrm{O}$ to give 42. The THP group in 42 was deprotected in hot AcOH , and the resultant hydroxyl group was replaced with a bromine atom. The final pyrrolidine ring formation by the action of NaH and successive Boc deprotection gave 43. Contrary to other tricycles, the aromatic bicyclic portion of 46 did not have to be constructed because commercially available 44 proved to be a good source of this ring system. Reaction of 44 with tert-butyl 2,2-dioxo[$1,2,3$] oxathiazolidine-3-carboxylate ${ }^{31}$ and subsequent acidic Boc deprotection followed by treatment with $\mathrm{K}_{2} \mathrm{CO}_{3}$ gave intermediate 45 . Finally, this compound was reduced by BH_{3}. THF complex to obtain the desired amine 46. The pyrazolo [1,5-a]pyridine core of 51 was constructed via 1,3-dipolar cycloaddition ${ }^{32}$ of 1 -aminopyridinium mesitylenesulfonate 47^{33} and 4-(tetrahydropyran-2-yloxy)but-2-ynal. ${ }^{34}$ Condensation of the thus obtained 48 with nitromethane followed by LAH reduction gave 49 , which was then converted to 50 by Boc protection and selective THP deprotection. Cyclization of $\mathbf{5 0}$ to $\mathbf{5 1}$ was conducted via replacement of the hydroxyl group with bromine and successive Boc deprotection. Herein, we have synthesized novel and unique heterocycles as depicted in Scheme 3. These heterocycles and their synthetic procedures are potentially useful for the discovery of other pharmacologically relevant molecules including metalloprotease inhibitors. ${ }^{23}$

The (1S,2R,3R)-1-amino-2,3-dimethyl-2-phenylcyclopropanecarboxylic acid core skeleton was prepared as described in our previous reports. ${ }^{12 b, 35}$ Trans addition of freshly prepared methanesulfenyl chloride to cis-2-phenyl-2-butene 52 and subsequent treatment of the adduct with dimethyl malonate gave a mixture of rac-53 and rac-54. The mixture of these compounds was converted to rac-55 via sulfonium salt formation and subsequent cyclization under basic conditions. ${ }^{36}$ Selective hydrolysis of the less hindered ester of rac-55 and successive Curtius rearrangement yielded rac-56, which was ready for chiral

Scheme 3^{a}

${ }^{a}$ Reagents and conditions: (a) (i) $\mathrm{R}^{1} \mathrm{R}^{2} \mathrm{NH} \cdot n \mathrm{HCl}, \mathrm{NMM}, 1,4$-dioxane, $100^{\circ} \mathrm{C}$; (ii) $\mathrm{HCl} / 1,4$-dioxane; (b) 3-bromo-2-oxopentanedioic acid dimethyl ester, ethanol, $100^{\circ} \mathrm{C}$; (c) DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$; (d) DPPA, DBU, THF; (e) (i) $\mathrm{PPh}_{3}, \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}, 60^{\circ} \mathrm{C}$; (ii) $\mathrm{Boc}_{2} \mathrm{O}$, DMAP; (iii) $\mathrm{HCl} / 1,4$-dioxane; (f) 2-chloro-3-oxosuccinic acid diethyl ester, ethanol, $100^{\circ} \mathrm{C}$; (g) (i) DIBAL-H, toluene/THF, $-78^{\circ} \mathrm{C}$; (ii) NaBH_{4}, methanol; (h) (i) dihydropyrane, $\operatorname{In}(\mathrm{OTf})_{3}, \mathrm{CHCl}_{3}, 80^{\circ} \mathrm{C}$; (ii) LAH, $\mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$; (i) (i) DPPA, DBU, THF; (ii) $\mathrm{PPh}_{3}, \mathrm{H}_{2} \mathrm{O}, 60^{\circ} \mathrm{C}$; (iii) Boc O , DMAP; (j) (i) AcOH, $\mathrm{H}_{2} \mathrm{O}, 100^{\circ} \mathrm{C}$; (ii) $\mathrm{CBr}_{4}, \mathrm{PPh}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (iii) $\mathrm{NaH}, \mathrm{DMSO}, 90^{\circ} \mathrm{C}$; (iv) $\mathrm{HCl} / 1,4$-dioxane; (k) (i) 3-tert-butoxycarbonyl-2,2-dioxo[1,2,3] oxathiazolidine, NaH, DMF; (ii) TFA, CHCl_{3}; (iii) $\mathrm{K}_{2} \mathrm{CO}_{3}$, THF/methanol; (1) $\mathrm{BH}_{3} \cdot \mathrm{THF}, \mathrm{THF}, 6{ }^{\circ} \mathrm{C}$; (m) 4-(tetrahydropyran-2-yloxy)but-2-ynal, $\mathrm{K}_{2} \mathrm{CO}_{3}$, DMF; (n) (i) $\mathrm{CH}_{3} \mathrm{NO}_{2}$, $\mathrm{AcO}^{-} \mathrm{N}^{+} \mathrm{H}_{4}, 100{ }^{\circ} \mathrm{C}$; (ii) LAH, THF; (o) (i) $\mathrm{Boc}_{2} \mathrm{O}$, THF; (ii) $1 \mathrm{M} \mathrm{HCl}, 1,4$-dioxane; (p) (i) $\mathrm{CBr}_{4}, \mathrm{PPh}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (ii) NaH , DMF; (iii) $\mathrm{HCl} / 1,4-$ dioxane.

Scheme 4^{a}

${ }^{a}$ Reagents and conditions: (a) (i) $(\mathrm{MeS})_{2}, \mathrm{SO}_{2} \mathrm{Cl}_{2}$, toluene, $-10{ }^{\circ} \mathrm{C}$; (ii) $52,-40^{\circ} \mathrm{C}$; (iii) dimethyl malonate, $\mathrm{NaO}-t-\mathrm{Bu}, \mathrm{DME}$; (b) (i) (MeO) $2_{2} \mathrm{SO}_{2}, 1,4$-dioxane, $50^{\circ} \mathrm{C}$; (ii) NaOMe , methanol, $70^{\circ} \mathrm{C}$; (c) (i) $4 \mathrm{M} \mathrm{NaOH}, \mathrm{THF} /$ methanol; (ii) DPPA, $t-\mathrm{BuOH}, \mathrm{Et}_{3} \mathrm{~N}$, toluene, 100 ${ }^{\circ} \mathrm{C}$; (d) (i) 4 M NaOH , THF/methanol, $90^{\circ} \mathrm{C}$; (ii) quinidine, acetone; (e) (i) $10 \% \mathrm{KHSO}_{4}$; (ii) $\left(t\right.$-BuO) ${ }_{2} \mathrm{CHNMe}_{2}$, toluene, $100{ }^{\circ} \mathrm{C}$; (iii) p $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$, methanol; (iv) $\mathrm{ClSO}_{2} \mathrm{NCO}$, 2-chloroethanol, NMM, $\mathrm{CH}_{3} \mathrm{CN}, 50^{\circ} \mathrm{C}$; (f) (i) $\mathrm{R}^{1} \mathrm{R}^{2} \mathrm{NH} \cdot n \mathrm{HCl}, \mathrm{NMM}, 1,4$-dioxane, $100^{\circ} \mathrm{C}$; (ii) $\mathrm{HCl} / 1$,4-dioxane.
resolution after hydrolysis of another ester group. Among several conditions we examined, recrystallization of the quinidine salt from acetone was finally found to be the best combination to obtain 57 in enantiomerically pure form. The absolute stereochemistry of 57 was
determined as $(1 S, 2 R, 3 R)$ by its X-ray crystallographic analysis, as shown in Figure 5.57 was converted to sulfamide precursor 58 in the same way described in our earlier paper. ${ }^{12 \mathrm{~b}}$ Treatment of 58 with appropriate amines prepared above and subsequent acidic tert-butyl ester deprotection provided 13a-e (Scheme 4).

- CONCLUSION

Given that broad-spectrum MMP inhibitors have shown serious side effects in clinical trials owing to their lack of specificity, the focus of our aggrecanase inhibitor program has been to develop inhibitors with high selectivity. During the course of our SAR investigation, we discovered that modulation of the Pl^{\prime} moiety was quite effective in increasing the selectivity for aggrecanase vs other closely related zinc metalloproteases. On the basis of this concept, we have synthesized several novel sulfamide-based compounds and achieved a dramatic enhancement in selectivity. The selectivity was further increased by introduction of a methyl group at the 2-position of the cyclopropane ring. Lead compound $\mathbf{1 3 b}$ had an IC_{50} of 8.4 nM for aggrecanase- 2 and >1000-fold selectivity over the other six zinc metalloproteases tested. Generally, these compounds showed good pharmacokinetic properties, as represented by the data for compound 13b, and exhibited neither CYP inhibition ($\mathrm{IC}_{50}>50$ $\mu \mathrm{M}$ against 3A4, 2C9, 2D6, 1A2, 2A6, and 2C19) nor hERG potassium ion channel activity (5.4% inhibition at $30 \mu \mathrm{M}$) in the patch clamp assay. Recently, Agg-523, Wyeth's aggrecanase inhibitor, has entered into clinical trials aiming to become the first disease modifying osteoarthritis drug (DMORD). ${ }^{37}$ Although its efficacy data are currently unavailable, selective aggrecanase inhibitors, including our compounds such as 13b,
have great potential to become DMORDs without the side effects seen previously with nonselective MMP inhibitors.

- EXPERIMENTAL SECTION

Chemistry. Unless otherwise specified, materials were purchased from commercial suppliers or prepared using procedures reported elsewhere. Melting points were obtained with a Yanagimoto micromelting point apparatus or a Stanford Research Systems MPA100 and were uncorrected. Combustion analyses were performed with a Perkin-Elmer 2400 series II CHNS/O analyzer, and all values were within $\pm 0.4 \%$ of the calculated values. Mass spectra were recorded on an Agilent Technologies 1100 series LC/MS (ESI) spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a JEOL JNM-A300W, Bruker DPX300, Bruker ARX400, or Varian MERCURYplus-AS400 spectrometer in a solution of CDCl_{3}, methanol $-d_{4}$, or DMSO- d_{6} using tetramethylsilane as the internal standard. Chemical shifts are expressed as $\delta(\mathrm{ppm})$ values for protons relative to the internal standard. Standard abbreviations indicating multiplicity were used as follows: $s=$ singlet, br $s=$ broad singlet, $\mathrm{d}=$ doublet, $\mathrm{dd}=$ double doublet, $\mathrm{ddd}=$ double double doublet, $\mathrm{dt}=$ double triplet, $\mathrm{dq}=$ double quartet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, and $\mathrm{m}=$ multiplet. All compounds gave spectra consistent with their assigned structures. Optical rotation was measured at $20^{\circ} \mathrm{C}$ with a Rudolph Research Analytical AUTOPOL V spectrometer. Single-crystal X-ray analysis was performed with Rigaku R-AXIS RAPID analysis system. The purity of all of the tested compounds was determined by combustion analyses and was $\geq 95 \%$.
(1S,2R,3R)-1-[5-(4-Chloropyrazol-1-yl)-4-methylthiophene-2-sulfonylamino]-2-methyl-3-phenylcyclopropanecarboxylic Acid (7a). To a stirred solution of ($1 S, 2 R, 3 R$)-1-amino-2-methyl-3-phenylcyclopropanecarboxylic acid tert-butyl ester $14^{12 \mathrm{~b}}$ $(47 \mathrm{mg}, 0.19 \mathrm{mmol})$ in pyridine $(0.5 \mathrm{~mL})$ was added $16 \mathrm{a}(56 \mathrm{mg}, 0.19$ mmol) portionwise at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 12 h and was then poured into ice-water, and the product was extracted with EtOAc. The organic layer was washed with $0.5 \mathrm{M} \mathrm{HCl}, 5 \%$ solution of NaHCO_{3}, and brine, dried over MgSO_{4}, and evaporated under reduced pressure. The residue was purified by flash chromatography (n-hexane/EtOAc 4:1) to give the tert-butyl ester of 7 a (46 mg , 48% yield), which was successively treated with 4 M HCl in 1,4-dioxane $(1 \mathrm{~mL})$ at room temperature for 12 h . After the solvent was removed in vacuo, the crude product was purified by trituration with methanol $/ \mathrm{H}_{2} \mathrm{O}$ to yield 7a as a white solid ($36 \mathrm{mg}, 83 \%$ yield): $\mathrm{mp} 177-181^{\circ} \mathrm{C} ;[\alpha]^{20}{ }_{\mathrm{D}}$ $+104.74^{\circ}$ ($c 0.19$, methanol); ${ }^{1}$ H NMR (400 MHz , DMSO- d_{6}) $\delta 1.27$ (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.97(\mathrm{dq}, ~ J=10.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.79(\mathrm{~d}$, $J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H})$, $7.94(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.53(\mathrm{~d}, J=0.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.08(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 12.35$ (brs, 1 H). Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{ClN}_{3} \mathrm{O}_{4} \mathrm{~S}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right)$ calcd C $49.51 \%, \mathrm{H} 4.15 \%$, N 9.11\%; found C 49.49\%, H 4.26\%, N 9.14\%.
(1S,2R,3R)-1-[5-(4-Methoxypyrazol-1-yl)thiophene-2-sulfonylamino]-2-methyl-3-phenylcyclopropanecarboxylic Acid (7b). 7 b was prepared by coupling of 14 with $\mathbf{1 6 b}$ following the procedures described for 7 a . The crude product was purified by trituration with methanol/ $\mathrm{H}_{2} \mathrm{O}$ to yield $7 \mathbf{b}$ as a white solid (41% yield): $\mathrm{mp} 84-88^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}+79.23^{\circ}$ (c 0.13, methanol); ${ }^{1} \mathrm{H}$ NMR (300 MHz , methanol $\left.-d_{4}\right) \delta 1.38(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.15-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.93$ (d, $J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 7.05(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.24$ (m, 5H), $7.47-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.97(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H})$. Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right)$ calcd C $51.57 \%, \mathrm{H} 4.56 \%, \mathrm{~N} 9.50 \%$; found C 51.67%, H 4.66%, N 9.53%.
(1S,2R,3R)-2-Methyl-1-[5-(4-methylpyrazol-1-yl)thiophene-2-sulfonylamino]-3-phenylcyclopropanecarboxylic Acid (7 c). 7 c was prepared by coupling of 14 with 16 c following the procedures described for 7 a . The crude product was purified by trituration with methanol/ $\mathrm{H}_{2} \mathrm{O}$ to yield 7 c as a white solid (34% yield):
mp 202-206 ${ }^{\circ} \mathrm{C} ;[\alpha]^{20}{ }_{\mathrm{D}}+100.00^{\circ}$ (c 0.14, methanol); ${ }^{1} \mathrm{H}$ NMR (400 MHz , methanol- d_{4}) $\delta 1.37(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}$), $2.14(\mathrm{~s}, 3 \mathrm{H})$, $2.16-2.24(\mathrm{~m}, 1 \mathrm{H}), 2.94(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.16-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.48(\mathrm{dd}, J=4.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.99$ (br s, 1H). Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right)$ calcd C $53.50 \%, \mathrm{H} 4.73 \%$, N 9.85%; found C 53.85%, H 4.72%, N 9.86%.
(1S,2R,3R)-1-(6-Chlorothieno[3', $2^{\prime}: 4,5$]imidazo[1,2-a]py-ridine-2-sulfonylamino)-2-methyl-3-phenylcyclopropanecarboxylic Acid (8a). 8a was prepared by coupling of 14 with 21 following the procedures described for 7a. The crude product was purified by trituration with methanol/ $/ \mathrm{H}_{2} \mathrm{O}$ to yield 8 a as a white solid (57% yield): mp $243-248{ }^{\circ} \mathrm{C} ;[\alpha]^{20}{ }_{\mathrm{D}}+52.67^{\circ}$ (c 0.21, methanol); ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 1.26(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.00(\mathrm{dq}$, $J=10.3,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.81$ $(\mathrm{s}, 1 \mathrm{H}), 7.89(\mathrm{~s}, 1 \mathrm{H}), 9.02(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.15(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 12.22$ (br s, 1 H). Anal. ($\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{ClN}_{3} \mathrm{O}_{4} \mathrm{~S}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$) calcd C 50.05%, H 3.78\%, N 8.75%; found C 50.20%, H 3.59%, N 8.66%.

5-(4-Chloropyrazol-1-yl)-4-methylthiophene-2-sulfonyl Chloride (16a). A mixture of 15 a ($500 \mathrm{mg}, 3.24 \mathrm{mmol}$), 2-bromo3 -methylthiophene ($689 \mathrm{mg}, 3.89 \mathrm{mmol}$), $\mathrm{Cu}_{2} \mathrm{O}(46 \mathrm{mg}, 0.324 \mathrm{mmol})$, salicylaldoxime ($178 \mathrm{mg}, 1.30 \mathrm{mmol}$), and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(2.11 \mathrm{~g}, 6.48 \mathrm{mmol})$ in N, N-dimethylacetamide $(5.0 \mathrm{~mL})$ was heated at $150^{\circ} \mathrm{C}$ under an argon atmosphere. After 12 h , the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo, and the residue was purified by flash chromatography (n-hexane/EtOAc 8:1) to afford 4-chloro-1-(3-methylthio-phen-2-yl)pyrazole as a yellow oil ($211 \mathrm{mg}, 33 \%$ yield). To this product, $\mathrm{HSO}_{3} \mathrm{Cl}(0.8 \mathrm{~mL}, 12 \mathrm{mmol})$ was added, and the mixture was heated at $70{ }^{\circ} \mathrm{C}$ for 8 h under argon. After cooling to room temperature, the reaction mixture was poured into ice-water and the resulting precipitate was collected by filtration to give 16a as a brown solid ($214 \mathrm{mg}, 68 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.40(\mathrm{~s}, 3 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.70$ (s, 1H), 7.82 (s, 1H).

5-(4-Methoxypyrazol-1-yl)thiophene-2-sulfonyl Chloride (16b). 16b was prepared by coupling of 2 -bromothiophene with 4-methoxypyrazole $\mathbf{1 5 b}$ and subsequent sulfonylation following the procedures described for 16a. Pale yellow solid (53% yield); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.83(\mathrm{~s}, 3 \mathrm{H}), 6.87(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H})$, $7.51(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{~d}, \mathrm{~J}=4.4 \mathrm{~Hz}, 1 \mathrm{H})$.

5-(4-Methylpyrazol-1-yl)thiophene-2-sulfonyl Chloride (16c). 16c was prepared by coupling of 2-bromothiophene with 4-methylpyrazole 15 c and subsequent sulfonylation following the procedures described for 16a. Pale yellow solid (13% yield); ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 2.07(\mathrm{~s}, 3 \mathrm{H}), 6.95(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}$, $J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~s}, 1 \mathrm{H}), 8.14(\mathrm{~s}, 1 \mathrm{H})$.

7-Chloro-2-dichloromethylimidazo[1,2-a]pyridine (18). A solution of 1,1,3-trichloropropan-2-one $17(15.1 \mathrm{~g}, 93.4 \mathrm{mmol})$ in 1 , 2-dimethoxyethane $(20 \mathrm{~mL})$ was added dropwise to a stirred suspension of 2 -amino-4-chloropyridine ($8.00 \mathrm{~g}, 62.3 \mathrm{mmol}$) in 1,2-dimethoxyethane $(80 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The suspension soon turned into a clear solution, and a white precipitate was formed after stirring for 12 h at room temperature. The white solid was collected by filtration and successively heated in ethanol (60 mL) at $80^{\circ} \mathrm{C}$ for 4 h . After removal of the solvent under reduced pressure, the mixture was poured into a saturated solution of NaHCO_{3} at $0^{\circ} \mathrm{C}$ and extracted with chloroform. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The resultant crude product was purified by trituration with diethyl ether to give $\mathbf{1 8}$ as a pale yellow solid $\left(8.22 \mathrm{~g}, 56 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 7.06$ (dd, $J=7.3$, $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~s}, 1 \mathrm{H}), 8.59(\mathrm{~d}$, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$.

3-Bromo-7-chloroimidazo[1,2-a]pyridine-2-carbaldehyde (19). To a suspension of $18(8.22 \mathrm{~g}, 34.9 \mathrm{mmol})$ in acetonitrile (80 mL) was added N -bromosuccinimide ($8.06 \mathrm{~g}, 45.3 \mathrm{mmol}$) at room temperature, and the mixture was stirred for 4 h under an argon atmosphere.
$\mathrm{CaCO}_{3}(10.4 \mathrm{~g}, 104 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$ were added to the mixture, and the mixture was heated at $100^{\circ} \mathrm{C}$ for 4 h . After cooling to room temperature, the reaction mixture was poured into a saturated solution of NaHCO_{3} at $0^{\circ} \mathrm{C}$ and extracted with chloroform. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated, affording a crude product, which was purified by flash chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{EtOAc}\right.$ $25: 1)$ to afford 19 as a pale yellow solid ($7.69 \mathrm{~g}, 85 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.04(\mathrm{dd}, J=7.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{dd}, J=2.1$, $0.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.16$ (dd, $J=7.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 10.18(\mathrm{~s}, 1 \mathrm{H})$.

6-Chlorothieno[3', $\left.2^{\prime}: 4,5\right]$ imidazo[1,2-a]pyridine-2-carboxylic Acid (20). Ethyl thioglycolate ($4.3 \mathrm{~mL}, 39.2 \mathrm{mmol}$) was added dropwise to a solution of $\mathrm{NaO}-t-\mathrm{Bu}(3.77 \mathrm{~g}, 39.2 \mathrm{mmol})$ in ethanol $(40 \mathrm{~mL})$, and the mixture was stirred at room temperature for 0.5 h . To this reaction mixture was added a solution of $19(4.85 \mathrm{~g}, 18.7 \mathrm{mmol})$ in ethanol $(70 \mathrm{~mL})$. The mixture was heated at $100^{\circ} \mathrm{C}$ for 2 h and further heated at this temperature for 1 h after addition of $4 \mathrm{M} \mathrm{NaOH}(10 \mathrm{~mL})$. After cooling to room temperature, the mixture was concentrated under reduced pressure and neutralized with 2 M HCl at $0^{\circ} \mathrm{C}$ to afford a pale yellow solid. The crude product was purified by trituration with ethanol to give 20 as a pale yellow solid ($1.33 \mathrm{~g}, 28 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, DMSO- d_{6}) $\delta 7.13(\mathrm{dd}, J=7.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{dd}, J=2.2,0.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.95(\mathrm{~s}, 1 \mathrm{H}), 8.97(\mathrm{dd}, J=7.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 13.43$ (br s, 1H).

6-Chlorothieno[$\left.3^{\prime}, 2^{\prime}: 4,5\right]$ imidazo[1,2-a]pyridine-2-sulfonyl Chloride (21). A mixture of $20(411 \mathrm{mg}, 1.63 \mathrm{mmol})$ and $\mathrm{Cu}_{2} \mathrm{O}$ $(23 \mathrm{mg}, 0.16 \mathrm{mmol})$ in quinoline $(4.1 \mathrm{~mL})$ was heated at $200^{\circ} \mathrm{C}$ under an argon atmosphere for 1 h . After the mixture was cooled to room temperature, the crude product was purified by flash chromatography (n-hexane/EtOAc $5: 1$) to give 6 -chlorothieno $\left[3^{\prime}, 2^{\prime}: 4,5\right]$ imidazo[1 , 2-a] pyridine as a brown solid ($241 \mathrm{mg}, 71 \%$ yield). To this brown solid, $\mathrm{ClSO}_{3} \mathrm{H}(0.5 \mathrm{~mL}, 7.5 \mathrm{mmol})$ was added and the mixture was heated at $80^{\circ} \mathrm{C}$ for 5 h under an argon atmosphere. After cooling to room temperature, the reaction mixture was poured into ice-water and the resulting precipitate was collected by filtration to give 21 as a pale yellow solid ($279 \mathrm{mg}, 79 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.00$ (dd, $J=7.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $8.18(\mathrm{~s}, 1 \mathrm{H})$.
(1S,2R,3R)-1-(5-Chloro-4-nitrothiophene-2-sulfonylamino)-2-methyl-3-phenylcyclopropanecarboxylic Acid tert-Butyl Ester (22). 22 was prepared by coupling of 14 with 5 -chloro-4-nitrothiophene-2-sulfonyl chloride following the procedures described for 7a, but in this case the final acidic hydrolysis was not conducted. Pale yellow solid (50% yield); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.00(\mathrm{~s}, 9 \mathrm{H})$, $1.45(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.40(\mathrm{dq}, J=10.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{~d}, J=10.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.03(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.16-7.34(\mathrm{~m}, 5 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H})$.
(1S,2R,3R)-1-[5-(5-Chloropyridin-2-yl)-4-nitrothiophene-2-sulfonylamino]-2-methyl-3-phenylcyclopropanecarboxylic Acid tert-Butyl Ester (23). A mixture of 22 ($352 \mathrm{mg}, 0.745 \mathrm{mmol}$), 5-chloro-2-trimethylstannanylpyridine ($300 \mathrm{mg}, 0.745 \mathrm{mmol}$), and $\operatorname{PdClBn}\left(\mathrm{PPh}_{3}\right)_{2}(56 \mathrm{mg}, 0.075 \mathrm{mmol})$ in toluene $(7.0 \mathrm{~mL})$ was heated at $120^{\circ} \mathrm{C}$ under argon. After 12 h , the reaction mixture was concentrated and purified by flash chromatography (n-hexane/EtOAc $8: 1$) to afford 23 as a yellow oil ($206 \mathrm{mg}, 50 \%$ yield). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $1.01(\mathrm{~s}, 9 \mathrm{H}), 1.46(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.41(\mathrm{dq}, J=10.6,6.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.09(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.19-7.32(\mathrm{~m}, 5 \mathrm{H})$, $7.77-7.78(\mathrm{~m}, 2 \mathrm{H}), 8.08(\mathrm{~s}, 1 \mathrm{H}), 8.60-8.61(\mathrm{~m}, 1 \mathrm{H})$.
(1S,2R,3R)-1-(5-Bromothiophene-2-sulfonylamino)-2-methyl-3-phenylcyclopropanecarboxylic Acid tert-Butyl Ester (24). 24 was prepared by coupling of 14 with 5 -bromothio-phene-2-sulfonyl chloride following the procedures described for 7a, but in this case the final acidic hydrolysis was not conducted. White solid (69% yield); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 1.00(\mathrm{~s}, 9 \mathrm{H}), 1.32(\mathrm{~d}$, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 2.00-2.09(\mathrm{~m}, 1 \mathrm{H}), 2.81(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.18-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.40$ $(\mathrm{d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 9.12(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$.
(1S,2R,3R)-1-[5-(4-Chloro-2-nitrophenyl)thiophene-2-sul-fonylamino]-2-methyl-3-phenylcyclopropanecarboxylic Acid tert-Butyl Ester (25a). A mixture of 24 ($5.57 \mathrm{~g}, 11.8 \mathrm{mmol}$), 2-(4-chloro-2-nitrophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane $(3.68 \mathrm{~g}, 13.0 \mathrm{mmol})$, and $\mathrm{PdCl}_{2}(\mathrm{dppf}) \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(963 \mathrm{mg}, 1.18 \mathrm{mmol})$ in $2 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3} / 1$, 2-dimethoxyethane ($70 \mathrm{~mL}, 2: 5$) was heated at $100^{\circ} \mathrm{C}$ under an argon atmosphere. After 12 h , the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and EtOAc. The resultant precipitate was removed by filtration, and the organic layer of the filtrate was separated, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The crude product was purified by flash chromatography (n-hexane/EtOAc $5: 1$) to afford 25a as a brown solid (3.52 g , 54% yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.d_{6}\right) \delta 1.02(\mathrm{~s}, 9 \mathrm{H}), 1.31(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.96-2.05(\mathrm{~m}, 1 \mathrm{H}), 2.83(\mathrm{~d}$, $J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.57(\mathrm{~d}$, $J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{dd}, J=8.6,2.3 \mathrm{~Hz}, 1 \mathrm{H})$, $8.23(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 9.14(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$.
(1S,2R,3R)-1-[5-(4-Fluoro-2-nitrophenyl)thiophene-2-sul-fonylamino]-2-methyl-3-phenylcyclopropanecarboxylic Acid tert-Butyl Ester (25b). 25b was prepared by coupling of 24 with 2-(4-fluoro-2-nitrophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane following the procedures described for 25a. Brown solid (78% yield). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 1.03(\mathrm{~s}, 9 \mathrm{H}), 1.31(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$, $1.95-2.02(\mathrm{~m}, 1 \mathrm{H}), 2.82(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.24(\mathrm{~m}, 4 \mathrm{H})$, $7.25-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.66-7.75(\mathrm{~m}, 2 \mathrm{H}), 8.08(\mathrm{dd}$, $J=8.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 9.12$ (br s, 1H).
(1S,2R,3R)-1-[5-(5-Fluoro-2-nitrophenyl)thiophene-2-sul-fonylamino]-2-methyl-3-phenylcyclopropanecarboxylic Acid tert-Butyl Ester (25c). 25c was prepared by coupling of 24 with 2-(5-fluoro-2-nitrophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane following the procedures described for 25a. Brown solid (83% yield). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 1.04(\mathrm{~s}, 9 \mathrm{H}), 1.31(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$, $1.95-2.01(\mathrm{~m}, 1 \mathrm{H}), 2.82(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.32(\mathrm{~m}, 6 \mathrm{H})$, $7.53-7.62(\mathrm{~m}, 3 \mathrm{H}), 8.14(\mathrm{dd}, J=8.8,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 9.13$ (br s, 1H).
(1S,2R,3R)-1-(7-Chlorothieno[3',2':3,4]pyrazolo[1,5-a]py-ridine-2-sulfonylamino)-2-methyl-3-phenylcyclopropanecarboxylic Acid (8b). To a solution of 23 ($200 \mathrm{mg}, 0.364 \mathrm{mmol}$) in mesitylene $(4.0 \mathrm{~mL})$ was added $\mathrm{P}(\mathrm{OEt})_{3}(362 \mathrm{mg}, 2.18 \mathrm{mmol})$, and the mixture was heated at $150{ }^{\circ} \mathrm{C}$ under argon. After 8 h , the reaction mixture was concentrated and the residue was purified by preparative TLC (n-hexane/EtOAc 2:1) to afford tert-butyl ester of $\mathbf{8 b}$ as a brown oil $(22.6 \mathrm{mg}, 12 \%$ yield), which was successively treated with 4 M HCl in 1,4-dioxane $(0.5 \mathrm{~mL})$ at room temperature for 12 h . After the solvent was removed in vacuo, the crude product was purified by trituration with methanol $/ \mathrm{H}_{2} \mathrm{O}$ to give $\mathbf{8 b}$ as a pale yellow solid ($8.2 \mathrm{mg}, 40 \%$ yield): mp $220-226{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}+82.50^{\circ}\left(c 0.20\right.$, methanol); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.46(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.82-1.87(\mathrm{~m}, 1 \mathrm{H}), 3.09(\mathrm{~d}, J=10.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.31(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.14-7.23(\mathrm{~m}, 6 \mathrm{H}), 7.56(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.76(\mathrm{~s}, 1 \mathrm{H}), 8.58(\mathrm{~s}, 1 \mathrm{H})$. Anal. $\left(\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{ClN}_{3} \mathrm{O}_{4} \mathrm{~S}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right)$ calcd C 51.00%, H 3.64\%, N 8.92%; found C 51.12%, H 3.83\%, N 8.95%.
(1S,2R,3R)-1-(6-Chloro-4H-thieno[3,2-b]indole-2-sulfonyl-amino)-2-methyl-3-phenylcyclopropanecarboxylic Acid (8c). 8c was prepared from 25a following the procedures described for $\mathbf{8 b}$. The crude product was purified by trituration with methanol/ $\mathrm{H}_{2} \mathrm{O}$ to yield 8 c as a pale yellow solid (22% yield): mp $136-140^{\circ} \mathrm{C}$; $[\alpha]^{20}{ }_{\mathrm{D}}+118.18^{\circ}(c \quad 0.33, \mathrm{THF}) ;{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) δ $1.26(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.98(\mathrm{dq}, J=10.4,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{~d}, J=10.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.10-7.30(\mathrm{~m}, 6 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 1 \mathrm{H}), 9.02(\mathrm{~s}, 1 \mathrm{H}), 11.72(\mathrm{~s}, 1 \mathrm{H}), 12.23(\mathrm{~s}, 1 \mathrm{H})$. Anal. $\left(\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}\right)$ calcd C 54.72%, H 3.72%, $\mathrm{N} 6.08 \%$; found C 54.63\%, H 3.80\%, N 6.16\%.
(1S,2R,3R)-1-(6-Fluoro-4H-thieno[3,2-b]indole-2-sulfonyl-amino)-2-methyl-3-phenylcyclopropanecarboxylic Acid (8 d). 8 d was prepared from $\mathbf{2 5 b}$ following the procedures described for $\mathbf{8 b}$. The crude product was purified by trituration with methanol/ $\mathrm{H}_{2} \mathrm{O}$
to yield $\mathbf{8 d}$ as a pale yellow solid (57% yield): mp $229-233{ }^{\circ} \mathrm{C}$; $[\alpha]^{20}{ }_{\mathrm{D}}$ $+130.80^{\circ}$ (c 0.10, methanol); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 1.25$ $(\mathrm{d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.97(\mathrm{dd}, J=10.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{~d}$, $J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-7.03(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.28$ $(\mathrm{m}, 2 \mathrm{H}), 7.30-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.88-7.93(\mathrm{~m}, 1 \mathrm{H}), 8.97$ (br s, 1H), 11.68 (br s, 1H), 12.22 (br s, 1H). Anal. $\left(\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{FN}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}\right)$ calcd C 56.74%, H 3.85%, N 6.30%; found C 56.95%, H 4.09%, N 6.26%.
(1S,2R,3R)-1-(7-Fluoro-4H-thieno[3,2-b]indole-2-sulfo-nylamino)-2-methyl-3-phenylcyclopropanecarboxylic Acid (8e). 8e was prepared from 25 c following the procedures described for $\mathbf{8 b}$. The crude product was purified by trituration with methanol/ $\mathrm{H}_{2} \mathrm{O}$ to yield 8 e as a pale yellow solid (12% yield): mp $129-131^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{20}+124.6^{\circ}\left(c 0.13\right.$, methanol); ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) δ $1.25(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.97(\mathrm{dq}, J=10.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{~d}, J=10.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.11-7.22(\mathrm{~m}, 4 \mathrm{H}), 7.22-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.56(\mathrm{~m}, 1 \mathrm{H})$, $7.65(\mathrm{~s}, 1 \mathrm{H}), 7.71-7.78(\mathrm{~m}, 1 \mathrm{H}), 9.01(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 11.65(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 12.22$ (br s, 1 H). Anal. $\left(\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{FN}_{2} \mathrm{O}_{4} \mathrm{~S}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right)$ calcd C 55.62%, H 4.00%, N 6.18%; found C 55.69%, H 4.06\%, 6.20\%.
(1S,2R,3R)-1-[4-(4-Chlorophenyl)piperazine-1-sulfonyl-amino]-2-methyl-3-phenylcyclopropanecarboxylic Acid Hydrochloride (9a). To a solution of $26^{12 \mathrm{~b}}(127 \mathrm{mg}, 0.32 \mathrm{mmol})$ in 1,4dioxane $(2.5 \mathrm{~mL})$ were added N-methylmorpholine ($0.14 \mathrm{~mL}, 1.27$ mmol) and 1-(4-chlorophenyl)piperazine ($62 \mathrm{mg}, 0.32 \mathrm{mmol}$) obtained by neutralization of its dihydrochloride. After being stirred at $100{ }^{\circ} \mathrm{C}$ under argon atmosphere, the reaction mixture was diluted with saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc . The organic layer was washed with brine, dried over MgSO_{4}, and concentrated. The residue was purified by flash chromatography (n-hexane/EtOAc $5: 1$) to afford tert-butyl ester of 9 a ($101 \mathrm{mg}, 70 \%$ yield), which was successively treated with 4 M HCl in 1,4-dioxane (2.0 mL) at room temperature for 12 h . After the solvent was removed in vacuo, the crude product was purified by trituration with EtOAc to yield 9 a as a white solid $(60 \mathrm{mg}$, 56% yield): mp $107-110^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{20}+70.43^{\circ}$ (c 0.14, methanol); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $\left.d_{6}\right) \delta 1.25(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 2.00(\mathrm{dq}, J=$ $10.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{br} \mathrm{s}, 8 \mathrm{H}), 6.97(\mathrm{~d}, J=$ $9.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.12-7.31(\mathrm{~m}, 7 \mathrm{H}), 8.34(\mathrm{~s}, 1 \mathrm{H})$. Anal. $\left(\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{ClN}_{3} \mathrm{O}_{4} \mathrm{~S}\right.$. HCl calcd C 51.86%, H 5.18%, N 8.64%; found C 51.68%, H 5.23%, N 8.72\%.
(1S,2R,3R)-1-[4-(4-Chlorophenyl)-1,2,3,6-tetrahydropyri-dine-1-sulfonylamino]-2-methyl-3-phenylcyclopropanecarboxylic Acid (9b). 9b was prepared by coupling of 26 with 4-(4-chlorophenyl)-1,2,3,6-tetrahydropyridine following the procedures described for 9 a . The crude product was purified by trituration with methanol $/ \mathrm{H}_{2} \mathrm{O}$ to yield $\mathbf{9 b}$ as a pale yellow solid (15% yield): mp $94^{\circ} \mathrm{C}$; $[\alpha]^{20}{ }_{\mathrm{D}}+45.64^{\circ}(c 0.11$, methanol $)$; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 1.26(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.02(\mathrm{dq}, J=10.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.51-2.58$ $(\mathrm{m}, 2 \mathrm{H}), 2.88(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.29-3.37(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~d}$, $J=3.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.24(\mathrm{t}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.40(\mathrm{~d}$, $J=11.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.31(\mathrm{~s}, 1 \mathrm{H}), 12.36(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$. Anal. $\left(\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{O}_{4} \mathrm{~S} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}\right)$ calcd C 58.53%, H 5.25\%, N 6.21\%; found C 58.70%, H 5.27%, N 6.18%.
(1S,2R,3R)-1-[(R)-4-(4-Chlorophenyl)-3-methylpiperazine-1-sulfonylamino]-2-methyl-3-phenylcyclopropanecarboxylic Acid (9c). 9c was prepared by coupling of 26 with (R)-1-(4-chlorophenyl)-2-methylpiperazine ${ }^{24 a}$ following the procedures described for 9 a . The crude product was purified by trituration with 1 , 4-dioxane $/ \mathrm{H}_{2} \mathrm{O}$ to yield 9 c as a white solid (70% yield): mp $115-120^{\circ} \mathrm{C}$; $[\alpha]^{20}{ }_{\mathrm{D}}+66.70^{\circ}$ (c 0.40, methanol); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) δ $0.92(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.09(\mathrm{dq}, J=10.5,6.7$ $\mathrm{Hz}, 1 \mathrm{H}), 2.74-2.82(\mathrm{~m}, 1 \mathrm{H}), 2.86(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.93-3.04(\mathrm{~m}$, $2 \mathrm{H}), 3.32-3.39(\mathrm{~m}, 2 \mathrm{H}), 3.49-3.55(\mathrm{~m}, 1 \mathrm{H}), 4.09(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.91(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.30(\mathrm{~m}, 7 \mathrm{H}), 8.33(\mathrm{~s}, 1 \mathrm{H})$. Anal. $\left(\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{ClN}_{3} \mathrm{O}_{4} \mathrm{~S} \cdot 0.75\right.$ 1,4-dioxane) calcd $\mathrm{C} 56.65 \%, \mathrm{H} 6.09 \%$, N 7.93%; found C 56.47%, H 5.74\%, N 7.72%.
(1S,2R,3R)-1-[(S)-4-(4-Chlorophenyl)-3-methylpiperazine-1-sulfonylamino]-2-methyl-3-phenylcyclopropanecarboxylic Acid (9d). 9d was prepared by coupling of 26 with (S)-1-(4-chlorophenyl)-2-methylpiperazine ${ }^{24 a}$ following the procedures described for 9a. The crude product was purified by trituration with DMSO $/ \mathrm{H}_{2} \mathrm{O}$ to yield 9 d as a white solid (75% yield): mp $124-128^{\circ} \mathrm{C}$; $[\alpha]^{20}{ }_{\mathrm{D}}+41.42^{\circ}\left(c 0.45\right.$, methanol); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) δ $0.97(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 2.01(\mathrm{dq}, J=10.3,6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.77-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.91(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.95-3.04(\mathrm{~m}$, $2 \mathrm{H}), 3.32-3.41(\mathrm{~m}, 3 \mathrm{H}), 4.06-4.14(\mathrm{~m}, 1 \mathrm{H}), 6.90-6.98(\mathrm{~m}, 2 \mathrm{H})$, 7.15-7.30 (m, 7H), $8.35(\mathrm{~s}, 1 \mathrm{H})$. Anal. $\left(\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{ClN}_{3} \mathrm{O}_{4} \mathrm{~S} \cdot 0.75\right.$ DMSO) calcd C 54.01%, H 5.88\%, N 8.04%; found C 53.73%, H 5.82%, N 7.99\%.

Mixture of (1S,2R,3R)-1-[(R)-4-(4-Chlorophenyl)-3-ethyl-piperazine-1-sulfonylamino]-2-methyl-3-phenylcyclopropanecarboxylic Acid Hydrochloride and (1S,2R,3R)-1-[(S)-4-(4-Chlorophenyl)-3-ethylpiperazine-1-sulfonylamino]-2-methyl-3-phenylcyclopropanecarboxylic Acid Hydrochloride (9e). 9 e was prepared by coupling of 26 with 1-(4-chlorophenyl)-2ethylpiperazine ${ }^{24 \mathrm{~b}}$ following the procedures described for 9 a . The crude product was purified by trituration with $\mathrm{DMSO} / \mathrm{EtOAc}$ to yield 9 e as a white solid (74% yield); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 0.70-0.91$ $(\mathrm{m}, 3 \mathrm{H}), 1.21-1.33(\mathrm{~m}, 3 \mathrm{H}), 1.52-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.94-2.14(\mathrm{~m}, 1 \mathrm{H})$, 2.67-3.06 (m, 5H), 3.31-3.68 (m, 3H), 3.76-3.94 (m, 1 H$)$, 6.83-6.99 (m, 2H), 7.12-7.34 (m, 7H), $8.35(\mathrm{~s}, 1 \mathrm{H}), 11.88-12.55$ (m, 1H). Anal. $\left(\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{ClN}_{3} \mathrm{O}_{4} \mathrm{~S} \cdot \mathrm{HCl} \cdot 0.30 \mathrm{DMSO}\right)$ calcd C $52.70 \%, \mathrm{H}$ 5.77%, N 7.81%; found C 52.52% H 5.47%, N 7.52%.
(1S,2R,3R)-1-[4-(4-Chlorophenyl)-3,3-dimethylpiperazine-1-sulfonylamino]-2-methyl-3-phenylcyclopropanecarboxylic Acid (9f). 9f was prepared by coupling of 26 with 1-(4-chlorophenyl)-2,2-dimethylpiperazine following the procedures described for $9 \mathbf{a}$. The crude product was purified by trituration with methanol $/ \mathrm{H}_{2} \mathrm{O}$ to yield 9 f as a white solid (72% yield): mp $131^{\circ} \mathrm{C}$; $[\alpha]^{20}{ }_{\mathrm{D}}+74.33^{\circ}(c$ 0.55, methanol $)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) δ $0.96(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.02(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.78$ (br s, 1H), 2.97 (s, 2H), 3.06 (br s, 2H), 3.15 (br s, 2H), 7.07-7.18 $(\mathrm{m}, 3 \mathrm{H}), 7.22(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 7.28-7.31(\mathrm{~m}, 2 \mathrm{H})$. Anal. $\left(\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{ClN}_{3} \mathrm{O}_{4} \mathrm{~S}\right.$. $0.75 \mathrm{H}_{2} \mathrm{O}$) calcd C $56.20 \%, \mathrm{H} 6.05 \%$, N 8.55%; found C 56.13%, H 6.02\%, N 8.30\%.

Mixture of (1S,2R,3R)-1-[(R)-4-(4-Chlorophenyl)-3-hydro-xymethylpiperazine-1-sulfonylamino]-2-methyl-3-phenylcyclopropanecarboxylic Acid and (1S,2R,3R)-1-[(S)-4-(4-Chlorophenyl)-3-hydroxymethylpiperazine-1-sulfonyl-amino]-2-methyl-3-phenylcyclopropanecarboxylic Acid $(9 \mathrm{~g})$. To a solution of $26(71 \mathrm{mg}, 0.181 \mathrm{mmol})$ in 1,4-dioxane $(3.0 \mathrm{~mL})$ were added N -methylmorpholine ($0.022 \mathrm{~mL}, 0.200 \mathrm{mmol}$) and 33a (vide infra, $84 \mathrm{mg}, 0.181 \mathrm{mmol}$). After being stirred at $100^{\circ} \mathrm{C}$ under an argon atmosphere for 12 h , the reaction mixture was diluted with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$, extracted with EtOAc , washed with brine, dried over MgSO_{4}, and concentrated. The residue was purified by flash chromatography (n-hexane/EtOAc 5:1) to give the coupling product as a yellow oil ($46 \mathrm{mg}, 33 \%$ yield). To the solution of this compound in THF $(1.0 \mathrm{~mL})$ was added 1 M TBAF in THF $(0.10 \mathrm{~mL})$ at room temperature, and the mixture was stirred for 0.5 h . The solvent was removed in vacuo and the residue was purified by preparative TLC $\left(\mathrm{CHCl}_{3} /\right.$ methanol $\left.20: 1\right)$ to afford the corresponding alcohol $(30 \mathrm{mg}$, 94% yield), which was successively treated with 4 M HCl in 1,4-dioxane $(2 \mathrm{~mL})$ at room temperature for 12 h . After concentration in vacuo, the crude product was purified by trituration with $\mathrm{DMSO} / \mathrm{H}_{2} \mathrm{O}$ to yield 9 g as a pale yellow solid ($19 \mathrm{mg}, 71 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 1.20-1.28(\mathrm{~m}, 3 \mathrm{H}), 1.88-2.05(\mathrm{~m}, 1 \mathrm{H}), 2.66-3.79(\mathrm{~m}, 10 \mathrm{H}), 6.90$ (dd, $J=9.3,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.11-7.28(\mathrm{~m}, 7 \mathrm{H}), 8.13$ (br s, 1H). Anal. $\left(\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{ClN}_{3} \mathrm{O}_{4} \mathrm{~S} \cdot\right.$ DMSO) calcd C 53.22%, H 5.63%, $\mathrm{N} 8.10 \%$; found C 52.86%, H 5.90%, N 7.70%.
(1S,2R,3R)-1-[(R)-4-(4-Fluorophenyl)-3-methylpiperazine-1-sulfonylamino]-2-methyl-3-phenylcyclopropanecarboxylic Acid (10a). 10a was prepared by coupling of $\mathbf{2 6}$ with (R)-1-(4-fluorophenyl)-2-methylpiperazine ${ }^{24 \mathrm{~b}}$ following the procedures described for 9 a. The crude product was purified by trituration with $\mathrm{CHCl}_{3} /$ methanol to yield 10a as a white solid (58% yield): mp $218-222{ }^{\circ} \mathrm{C} ;[\alpha]^{20}{ }_{\mathrm{D}}+174.38^{\circ}$ (c 0.16, THF); ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 0.87(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$, $1.86-1.98(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.62(\mathrm{~m}, 1 \mathrm{H}), 2.91-3.00(\mathrm{~m}, 2 \mathrm{H})$, $3.12-3.20(\mathrm{~m}, 2 \mathrm{H}), 3.22-3.28(\mathrm{~m}, 1 \mathrm{H}), 3.45-3.53(\mathrm{~m}, 1 \mathrm{H})$, $3.84-3.91(\mathrm{~m}, 1 \mathrm{H}), 6.89-6.95(\mathrm{~m}, 2 \mathrm{H}), 7.01-7.11(\mathrm{~m}, 3 \mathrm{H}), 7.16$ $(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$. Anal. $\left(\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{FN}_{3} \mathrm{O}_{4} \mathrm{~S} \cdot 0.75 \mathrm{CHCl}_{3}\right)$ calcd C 56.21%, H 5.55%, N 8.64%; found C 56.33%, H $5.49 \%, 8.80 \%$.
(1S,2R,3R)-1-[(R)-4-(4-Cyclopropylphenyl)-3-methylpiper-azine-1-sulfonylamino]-2-methyl-3-phenylcyclopropanecarboxylic Acid Hydrochloride (10b). 10b was prepared by coupling of 26 with 33 c (vide infra) following the procedures described for 9 a. The crude product was purified by trituration with DMSO/ EtOAc to yield $\mathbf{1 0 b}$ as a pale yellow solid (49% yield): mp $141{ }^{\circ} \mathrm{C}$; $[\alpha]^{20}{ }_{\mathrm{D}}+50.89^{\circ}\left(c 0.45\right.$, methanol); ${ }^{1} \mathrm{H}$ NMR (400 MHz , methanol- d_{4}) $\delta 0.75(\mathrm{dt}, J=6.5,4.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.03-1.09(\mathrm{~m}, 2 \mathrm{H}), 1.12(\mathrm{~d}, J=6.5 \mathrm{~Hz}$, $3 \mathrm{H}), 1.40(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.96-2.04(\mathrm{~m}, 1 \mathrm{H}), 2.24(\mathrm{dq}, J=10.6,6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.03(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{dd}, J=13.6,10.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.43-3.52(\mathrm{~m}, 1 \mathrm{H}), 3.71-3.78(\mathrm{~m}, 2 \mathrm{H}), 3.94-4.04(\mathrm{~m}, 2 \mathrm{H}), 4.08(\mathrm{~d}$, $J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.33(\mathrm{~m}, 6 \mathrm{H}), 7.48-7.53$ (m, 2H). Anal. $\left(\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S} \cdot \mathrm{HCl} \cdot 1.1 \mathrm{DMSO}\right)$ calcd C 55.18%, H 6.57\%, N 7.10\%; found C 54.86%, H 6.27\%, N 7.42%.
(1S,2R,3R)-1-[(R)-4-(5-Cyanothiophen-2-yl)-3-methylpi-perazine-1-sulfonylamino]-2-methyl-3-phenylcyclopropanecarboxylic Acid (10c). 10c was prepared by coupling of 26 with 33b (vide infra) following the procedures described for 9a. The crude product was purified by trituration with methanol/ $\mathrm{H}_{2} \mathrm{O}$ to yield 10 c as a pale yellow solid (74% yield): mp $104^{\circ} \mathrm{C} ;[\alpha]^{20}{ }_{\mathrm{D}}+75.35^{\circ}(c 0.99$, methanol); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 1.11(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$, $1.27(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 2.08(\mathrm{dq}, J=10.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-2.84(\mathrm{~m}$, $2 \mathrm{H}), 2.99(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.16-3.22(\mathrm{~m}, 1 \mathrm{H}), 3.38-3.47(\mathrm{~m}, 2 \mathrm{H})$, $3.59(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-4.02(\mathrm{~m}, 1 \mathrm{H}), 6.20(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.11-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.61(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.38$ (br s, 1H). Anal. $\left(\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2} \cdot\right.$ methanol) calcd C 53.64%, H 5.73%, N 11.37\%; found C 53.40%, H 5.55%, 11.10%.
(1S,2R,3R)-1-[(R)-4-(5-Difluoromethylisoxazol-3-yl)-3-methy-Ipiperazine-1-sulfonylamino]-2-methyl-3-phenylcyclopropanecarboxylic Acid (10d). 10d was prepared by coupling of 26 with 33 e (vide infra) following the procedures described for 9 a . The crude product was purified by trituration with methanol $/ \mathrm{H}_{2} \mathrm{O}$ to yield 10d as a pale yellow solid (68% yield): $\mathrm{mp} 99^{\circ} \mathrm{C} ;[\alpha]^{20}{ }_{\mathrm{D}}+49.51^{\circ}(c 1.0$, methanol); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.21(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.35$ $(\mathrm{d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.30(\mathrm{dq}, J=10.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{td}, J=11.9,3.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.07(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{dd}, J=11.9,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.28$ (td, $J=12.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~d}, J=11.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.70(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.89-3.97(\mathrm{~m}, 1 \mathrm{H}), 5.76(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.20$ $(\mathrm{s}, 1 \mathrm{H}), 6.59(\mathrm{t}, J=53.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.31(\mathrm{~m}, 5 \mathrm{H})$. Anal. $\left(\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S} \cdot 1.2 \mathrm{H}_{2} \mathrm{O}\right)$ calcd C 48.81%, H 5.41%, $\mathrm{N} 11.39 \%$; found C 48.54%, H 5.10%, N 11.17%.
(1S,2R,3R)-1-\{(R)-4-[5-(1,1-Difluoroethyl)isoxazol-3-yl]-3-methylpiperazine-1-sulfonylamino\}-2-methyl-3-phenylcyclopropanecarboxylic Acid (10e). 10e was prepared by coupling of 26 with $33 f$ (vide infra) following the procedures described for 9 a. The crude product was purified by trituration with methanol $/ \mathrm{H}_{2} \mathrm{O}$ to yield 10 e as a pale yellow solid (54% yield): $\mathrm{mp} 85-90^{\circ} \mathrm{C} ;[\alpha]^{20}{ }_{\mathrm{D}}$ $+47.73^{\circ}\left(c 0.22\right.$, methanol); ${ }^{1}$ H NMR (400 MHz , methanol $-d_{4}$) $\delta 1.11$ (d, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.86(\mathrm{t}, J=18.6 \mathrm{~Hz}, 3 \mathrm{H})$, $2.15(\mathrm{dq}, J=10.5,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{td}, J=11.9,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.88$
$(\mathrm{d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{dd}, J=11.8,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.11-3.20(\mathrm{~m}, 1 \mathrm{H})$, $3.39-3.46(\mathrm{~m}, 1 \mathrm{H}), 3.46-3.52(\mathrm{~m}, 1 \mathrm{H}), 3.59-3.67(\mathrm{~m}, 1 \mathrm{H})$, $3.88-3.96(\mathrm{~m}, 1 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H}), 7.01-7.19(\mathrm{~m}, 5 \mathrm{H})$. Anal. $\left(\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}\right)$ calcd C 51.58%, H 5.46%, N 11.46%; found C 51.40%, H 5.57%, 11.43%.
(1S,2R,3R)-1-[(R)-4-(5-Methoxymethylisoxazol-3-yl)-3-methylpiperazine-1-sulfonylamino]-2-methyl-3-phenylcyclopropanecarboxylic Acid (10f). 10f was prepared by coupling of 26 with 33d (vide infra) following the procedures described for 9 a . The crude product was purified by trituration with methanol/ $\mathrm{H}_{2} \mathrm{O}$ to yield 10f as a pale yellow solid (67% yield): mp $71{ }^{\circ} \mathrm{C} ;[\alpha]^{20_{D}}+61.70^{\circ}$ (c 0.47, methanol); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, methanol- $\left.d_{4}\right) \delta 1.18(\mathrm{~d}, J=6.6$ $\mathrm{Hz}, 3 \mathrm{H}), 1.37(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.24(\mathrm{dq}, J=10.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.86$ $(\mathrm{td}, J=12.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dd}, J=11.7,3.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.23(\mathrm{td}, J=12.5,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{~d}, J=12.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.57(\mathrm{dt}, J=11.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.67-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.93-4.00$ $(\mathrm{m}, 1 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H}), 6.17(\mathrm{~s}, 1 \mathrm{H}), 7.15-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.29(\mathrm{~m}$, $4 \mathrm{H})$. Anal. $\left(\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right)$ calcd C 53.26%, H 6.17%, N 11.83%; found C 53.04%, H 6.13%, N 11.66%.

1-(tert-Butoxycarbonyl)-3-(tert-butyldiphenylsilanyloxy-methyl)-4-(4-chlorophenyl)piperazine (28a). A mixture of $27 \mathrm{a}^{25}(227 \mathrm{mg}, 0.50 \mathrm{mmol})$, 1-bromo-4-chlorobenzene ($115 \mathrm{mg}, 0.60$ $\mathrm{mmol}), \mathrm{NaO}-\mathrm{t}-\mathrm{Bu}(67 \mathrm{mg}, 0.70 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(2.2 \mathrm{mg}, 0.013$ $\mathrm{mmol})$, and $\mathrm{P}(t-\mathrm{Bu})_{3}(8.1 \mathrm{mg}, 0.040 \mathrm{mmol})$ in toluene $(3.0 \mathrm{~mL})$ was heated at $110^{\circ} \mathrm{C}$ under argon. After 12 h , the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and then extracted with EtOAc. The organic layer was separated, washed with brine, dried over MgSO_{4}, and concentrated. The crude product was purified by flash chromatography (n-hexane/EtOAc $9: 1)$ to give 28 a as a yellow oil ($152 \mathrm{mg}, 54 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, DMSO-d d_{6}) $\delta 0.94(\mathrm{~s}, 9 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}), 2.88-3.28(\mathrm{~m}, 4 \mathrm{H}), 3.37-3.41$ $(\mathrm{m}, 1 \mathrm{H}), 3.65-3.92(\mathrm{~m}, 3 \mathrm{H}), 4.26(\mathrm{~d}, \mathrm{~J}=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.62-6.84$ $(\mathrm{m}, 2 \mathrm{H}), 7.05-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.50(\mathrm{~m}, 6 \mathrm{H}), 7.52-7.60(\mathrm{~m}, 4 \mathrm{H})$.
(R)-1-(tert-Butoxycarbonyl)-4-(5-cyanothiophen-2-yl)-3methylpiperazine (28b). $\mathbf{2 8 b}$ was prepared by coupling of $\mathbf{2 7 b}$ with 5-bromothiophene-2-carbonitrile following the procedures described for 28a. Pale yellow oil (21% yield); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) δ $1.05(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}), 2.86-3.22(\mathrm{~m}, 3 \mathrm{H}), 3.31-3.36$ $(\mathrm{m}, 1 \mathrm{H}), 3.72-4.05(\mathrm{~m}, 3 \mathrm{H}), 6.19(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=4.2$ Hz, 1H).
(R)-1-(tert-Butoxycarbonyl)-3-methyl-4-phenylpiperazine (28c). 28 c was prepared by coupling of 27 b with bromobenzene following the procedures described for 28a. Pale yellow oil (73% yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.99(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H})$, $3.02-3.29(\mathrm{~m}, 3 \mathrm{H}), 3.38(\mathrm{dd}, J=13.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{ddd}, J=13.0$, $3.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.77-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.85-4.16(\mathrm{~m}, 1 \mathrm{H}), 6.84-6.94$ (m, 3H), 7.22-7.30 (m, 2H).
(R)-1-(tert-Butoxycarbonyl)-4-(4-cyclopropylphenyl)-3methylpiperazine (28d). To a solution of 28 c ($900 \mathrm{mg}, 3.25 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(45 \mathrm{~mL})$ was added tetrabutylammonium tribromide $(1.57 \mathrm{~g}$, 3.25 mmol) at $0^{\circ} \mathrm{C}$. After being stirred for 0.5 h at room temperature, the reaction mixture was diluted with a saturated solution of NaHCO_{3}, extracted with CHCl_{3}, and dried over MgSO_{4}. The organic layer was concentrated in vacuo, and the crude product was purified by flash chromatography (n-hexane/EtOAc 10:1) to afford (R)-1-(4-bromophenyl)-4-(tert-butoxycarbonyl)-2-methylpiperazine as a yellow oil ($790 \mathrm{mg}, 68 \%$ yield). To the solution of this product in toluene $/ \mathrm{H}_{2} \mathrm{O}$ ($10.5 \mathrm{~mL}, 20: 1$) were added cyclopropylboronic acid ($229 \mathrm{mg}, 2.66$ $\mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}(1.65 \mathrm{~g}, 7.77 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(25 \mathrm{mg}, 0.111 \mathrm{mmol})$, and tricyclohexylphosphine ($62 \mathrm{mg}, 0.222 \mathrm{mmol}$). After heating at $110^{\circ} \mathrm{C}$ for 4 h , the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and then extracted with EtOAc. The organic layer was dried over MgSO_{4} and concentrated under reduced pressure, and the residue was purified by flash chromatography (n-hexane/EtOAc 10:1) to give 28d as a yellow oil $\left(647 \mathrm{mg}, 92 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.59-0.64$
$(\mathrm{m}, 2 \mathrm{H}), 0.86-0.91(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H})$, $1.79-1.87(\mathrm{~m}, 1 \mathrm{H}), 2.98-3.10(\mathrm{~m}, 2 \mathrm{H}), 3.19-3.37(\mathrm{~m}, 1 \mathrm{H})$, $3.37-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.54-3.70(\mathrm{~m}, 2 \mathrm{H}), 3.70-3.99(\mathrm{~m}, 1 \mathrm{H}), 6.83(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$.

3-Bromo-5-methoxymethylisoxazole (31a). To a mixture of 29a ($1 \mathrm{~mL}, 11.8 \mathrm{mmol}$) and 1,1-dibromoformaldoxime ($2.00 \mathrm{~g}, 9.86$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added $\mathrm{KHCO}_{3}(2.96 \mathrm{~g}, 29.6 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After being stirred at $40^{\circ} \mathrm{C}$ for 4 h , the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with CHCl_{3}. The organic layer was dried over MgSO_{4} and concentrated under reduced pressure. The thus obtained residue was purified by flash chromatography (n-hexane/EtOAc 20:1) to give 31a as a yellow oil ($1.59 \mathrm{~g}, 84 \%$ yield based on 1,1 dibromoformaldoxime). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.45(\mathrm{~s}, 3 \mathrm{H})$, $4.55(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.35(\mathrm{t}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H})$.

5-Benzoyloxymethyl-3-bromoisoxazol (31b). 31b was prepared from 29b following the procedures described for 31a. Yellow oil (83% yield based on 1,1-dibromoformaldoxime); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.43(\mathrm{~s}, 2 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$.

3-Bromo-5-(1,1-difluoroethyl)isoxazole (31c). To a solution of $30(500 \mathrm{mg}, 2.63 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added bis $(2-$ methoxyethyl)aminosulfur trifluoride ($2.43 \mathrm{~mL}, 13.2 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. After being stirred at $45^{\circ} \mathrm{C}$ for 4 h , the reaction mixture was poured into 1 M NaOH at $0{ }^{\circ} \mathrm{C}$ and extracted with CHCl_{3}. The organic layer was dried over MgSO_{4} and concentrated under reduced pressure. The thus obtained residue was purified by flash chromatography (n-hexane) to give 31 c as a pale yellow oil $\left(211 \mathrm{mg}, 38 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 2.02(\mathrm{td}, J=18.5,1.1 \mathrm{~Hz}, 3 \mathrm{H}), 6.58(\mathrm{t}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H})$.
(R)-1-(tert-Butoxycarbonyl)-4-(5-methoxymethylisoxa-zol-3-yl)-3-methylpiperazine (32a). A mixture of 31 a ($1.45 \mathrm{~g}, 7.55$ $\mathrm{mmol})$ and $\mathrm{MeOTf}(0.897 \mathrm{~mL}, 7.93 \mathrm{mmol})$ was heated at $80^{\circ} \mathrm{C}$ for 1 h . The resulting methylisoxazolium salt was dissolved in methanol $(25 \mathrm{~mL})$ and treated with $\mathbf{2 7 b}(3.18 \mathrm{~g}, 15.9 \mathrm{mmol})$ at room temperature for 1 h . After concentration, the residue was treated with $\mathrm{PPh}_{3}(2.97 \mathrm{~g}, 11.3$ $\mathrm{mmol})$ in DMF $(20 \mathrm{~mL})$ at $130^{\circ} \mathrm{C}$ for 12 h . The reaction mixture was poured into a saturated aqueous solution of NaHCO_{3} at $0{ }^{\circ} \mathrm{C}$ and extracted with EtOAc. The organic layer was dried over MgSO_{4} and concentrated. The thus obtained residue was purified by flash chromatography (n-hexane/EtOAc 9:1) to give 32a as a pale yellow oil $(507 \mathrm{mg}$, 22% yield). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.15(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.48$ $(\mathrm{s}, 9 \mathrm{H}), 2.91-3.23(\mathrm{~m}, 3 \mathrm{H}), 3.34-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H})$, $3.76-4.24(\mathrm{~m}, 3 \mathrm{H}), 4.42(\mathrm{~s}, 2 \mathrm{H}), 5.88(\mathrm{~s}, 1 \mathrm{H})$.
(R)-1-(tert-Butoxycarbonyl)-4-(5-benzoyloxymethylisoxa-zol-3-yl)-3-methylpiperazine (32b). 32b was prepared from 31b following the procedures described for 32a. Pale yellow oil (26% yield); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.16(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H})$, $2.85-3.25(\mathrm{~m}, 3 \mathrm{H}), 3.33-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.78-4.23(\mathrm{~m}, 3 \mathrm{H}), 5.31(\mathrm{~s}$, $2 \mathrm{H}), 5.99(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.06$ (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$).
(R)-1-(tert-Butoxycarbonyl)-4-(5-difluoromethylisoxazol-3-yl)-3-methylpiperazine (32c). To a solution of 32 b (100 mg , $0.249 \mathrm{mmol})$ in ethanol $(1 \mathrm{~mL})$ was added $1 \mathrm{M} \mathrm{NaOH}(0.55 \mathrm{~mL})$, and the mixture was heated at $80^{\circ} \mathrm{C}$ for 1 h . After neutralization with 1 M HCl , the mixture was extracted with EtOAc and dried over MgSO_{4}. The organic layer was concentrated under reduced pressure, and the resultant alcohol was oxidized by Dess-Martin periodinane (116 mg , $0.274 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ at room temperature for 1 h . The mixture was diluted with saturated NaHCO_{3} and extracted with EtOAc. The organic layer was dried over MgSO_{4} and concentrated to give the corresponding aldehyde. The product was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and treated with bis(2-methoxyethyl)aminosulfur trifluoride (0.087 mL , 0.479 mmol) at room temperature for 1.5 h . The reaction mixture was poured into saturated NaHCO_{3} at $0^{\circ} \mathrm{C}$ and extracted with CHCl_{3}. The organic layer was dried over MgSO_{4} and evaporated. The thus obtained
crude product was purified by flash chromatography (n-hexane/EtOAc $4: 1)$ to give 32 c as a pale yellow oil ($58 \mathrm{mg}, 73 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.17(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}), 2.87-3.27$ $(\mathrm{m}, 3 \mathrm{H}), 3.33-3.47(\mathrm{~m}, 1 \mathrm{H}), 3.76-4.26(\mathrm{~m}, 3 \mathrm{H}), 6.19(\mathrm{~s}, 1 \mathrm{H}), 6.60(\mathrm{t}$, $J=53.8 \mathrm{~Hz}, 1 \mathrm{H})$.
(R)-1-(tert-Butoxycarbonyl)-4-[5-(1,1-difluoroethyl)isoxazol-3-yl]-3-methylpiperazine (32d). 32d was prepared from 31c following the procedures described for 32a. Pale yellow oil (4\% yield); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.17(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H})$, $1.97(\mathrm{t}, J=18.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.84-3.28(\mathrm{~m}, 3 \mathrm{H}), 3.32-3.45(\mathrm{~m}, 1 \mathrm{H})$, $3.74-4.27$ (m, 3H), 6.11 (s, 1H).

2-(tert-Butyldiphenylsilanyloxymethyl)-1-(4-chlorophenyl) piperazine (33a). 28a ($152 \mathrm{mg}, 0.269 \mathrm{mmol}$) was treated with 4 M HCl in 1,4-dioxane (3 mL) at room temperature for 12 h . After removal of the solvent in vacuo, the mixture was diluted with EtOAc , washed with saturated solution of NaHCO_{3}, dried over MgSO_{4}, and concentrated under reduced pressure. The crude product was purified by flash chromatography $\left(\mathrm{CHCl}_{3} /\right.$ methanol $\left.10: 1\right)$ to give 33a as a yellow oil ($70 \mathrm{mg}, 56 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 0.93$ ($\mathrm{s}, 9 \mathrm{H}$), $2.59-2.69(\mathrm{~m}, 1 \mathrm{H}), 2.73-2.84(\mathrm{~m}, 2 \mathrm{H}), 2.92(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.16$ $(\mathrm{d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{dd}, J=9.5,4.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.77-3.85(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.06(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.50(\mathrm{~m}, 6 \mathrm{H}), 7.52-7.61(\mathrm{~m}, 4 \mathrm{H})$.

5-((R)-2-Methylpiperazin-1-yl)thiophene-2-carbonitrile (33b). 33b was prepared from $28 b$ following the procedures described for 33a. Pale yellow oil (99% yield); ${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) δ $1.16(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.60-2.70(\mathrm{~m}, 1 \mathrm{H}), 2.74(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.84(\mathrm{dd}, J=12.5,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{td}$, $J=11.9,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.13-3.21(\mathrm{~m}, 1 \mathrm{H}), 3.65-3.74(\mathrm{~m}, 1 \mathrm{H}), 6.13(\mathrm{~d}$, $J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H})$.
(R)-1-(4-Cyclopropylphenyl)-2-methylpiperazine (33c). 33c was prepared from 28 d following the procedures described for 33a. Pale yellow oil (90% yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $0.55-0.68(\mathrm{~m}, 2 \mathrm{H}), 0.82-0.93(\mathrm{~m}, 2 \mathrm{H}), 0.98(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$, $1.78-1.90(\mathrm{~m}, 1 \mathrm{H}), 2.72-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.89-3.18(\mathrm{~m}, 5 \mathrm{H})$, $3.49-3.63(\mathrm{~m}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H})$.
(R)-1-(5-Methoxymethylisoxazol-3-yl)-2-methylpiperazine (33d). 33d was prepared from 32a following the procedures described for 33a. Pale yellow oil (89% yield); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.24$ $(\mathrm{d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.79-2.92(\mathrm{~m}, 2 \mathrm{H}), 2.98-3.20(\mathrm{~m}, 3 \mathrm{H}), 3.31-3.39$ $(\mathrm{m}, 1 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 3.68-3.79(\mathrm{~m}, 1 \mathrm{H}), 4.42(\mathrm{~s}, 2 \mathrm{H}), 5.87(\mathrm{~s}, 1 \mathrm{H})$.
(R)-1-(5-Difluoromethylisoxazol-3-yl)-2-methylpiperazine (33e). 33e was prepared from 32c following the procedures described for 33a. Pale yellow oil (88% yield); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.26$ $(\mathrm{d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.82-2.92(\mathrm{~m}, 2 \mathrm{H}), 2.98-3.12(\mathrm{~m}, 2 \mathrm{H}), 3.13-3.23$ $(\mathrm{m}, 1 \mathrm{H}), 3.31-3.40(\mathrm{~m}, 1 \mathrm{H}), 3.70-3.79(\mathrm{~m}, 1 \mathrm{H}), 6.18(\mathrm{~s}, 1 \mathrm{H}), 6.60(\mathrm{t}$, $J=53.8 \mathrm{~Hz}, 1 \mathrm{H})$.
(R)-1-[5-(1,1-Difluoroethyl)isoxazol-3-yl]-2-methylpiperazine (33f). 33f was prepared from 32d following the procedures described for 33a. Pale yellow oil (74\% yield); ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO $\left.-d_{6}\right) \delta 1.13(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.00(\mathrm{t}, J=19.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.62(\mathrm{td}$, $J=12.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.80-2.91(\mathrm{~m}, 2 \mathrm{H}), 2.98$ $(\mathrm{td}, J=12.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.24-3.31(\mathrm{~m}, 1 \mathrm{H}), 3.69-3.77(\mathrm{~m}, 1 \mathrm{H}), 6.77$ ($\mathrm{s}, 1 \mathrm{H}$).
(1S,2R,3R)-1-(8-Chloro-1,2,3,4-tetrahydropyrazino[1,2-a] indole-2-sulfonylamino)-2-methyl-3-phenylcyclopropanecarboxylic Acid (11a). 11a was prepared by coupling of 26 with 8-chloro-1,2,3,4-tetrahydropyrazino [1,2-a] indole $^{29 a}$ following the procedures described for 9 a . The product was purified by trituration with methanol $/ \mathrm{H}_{2} \mathrm{O}$ to yield 11a as a pale yellow solid (20% yield): mp $145^{\circ} \mathrm{C} ;[\alpha]^{20}{ }_{\mathrm{D}}+65.14^{\circ}\left(c 0.21\right.$, THF) ; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.d_{6}\right) \delta 1.25(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.03(\mathrm{dq}, J=10.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~d}$, $J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{t}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.15(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.54$ $(\mathrm{s}, 2 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H}), 7.11(\mathrm{dd}, J=8.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.26(\mathrm{~m}, 5 \mathrm{H})$,
$7.41(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.59(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$. Anal. $\left(\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{ClN}_{3} \mathrm{O}_{4} \mathrm{~S} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right)$ calcd C 56.35%, H 4.94%, $\mathrm{N} 8.96 \%$; found C 56.05%, H 5.04\%, N 8.86%.
(1S,2R,3R)-1-(8-Chloro-1,2,3,4-tetrahydropyrazino[1,2-a] benzimidazole-2-sulfonylamino)-2-methyl-3-phenylcyclopropanecarboxylic Acid Hydrochloride (11b). 11b was prepared by coupling of 26 with 8 -chloro-1,2,3,4-tetrahydropyrazino[1,2a]benzimidazole ${ }^{29 b}$ following the procedures described for 9a. The product was purified by trituration with EtOAc/DMSO to yield 11b as a white solid (38% yield): mp $188{ }^{\circ} \mathrm{C} ;[\alpha]^{20}{ }_{\mathrm{D}}+76.31^{\circ}$ (c 0.13 , methanol); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 1.25(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $3 \mathrm{H}), 2.04(\mathrm{dq}, J=10.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.77-3.85(\mathrm{~m}, 2 \mathrm{H}), 4.27-4.34(\mathrm{~m}, 2 \mathrm{H}), 4.70(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 7.13-7.21(\mathrm{~m}$, $3 \mathrm{H}), 7.21-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{dd}, J=8.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.83(\mathrm{brs}, 1 \mathrm{H})$. Anal. $\left(\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{ClN}_{4} \mathrm{O}_{4} \mathrm{~S}\right.$. $\mathrm{HCl} \cdot 0.75 \mathrm{DMSO}$) calcd C $48.60 \%, \mathrm{H} 4.80 \%$, N 10.07%; found C 48.43\%, H 5.02\%, N 10.18\%.
(1S,2R,3R)-1-(8-Chloro-1,2,3,4-tetrahydropyrido[3', $\left.4^{\prime}: 4,5\right]$ imidazo[1,2-a]pyridine-2-sulfonylamino)-2-methyl-3-phenylcyclopropanecarboxylic Acid (11c). 11c was prepared by coupling of 26 with 38a (vide infra) following the procedures described for 9 a . The product was purified by trituration with methanol $/ \mathrm{H}_{2} \mathrm{O}$ to yield 11c as a white solid (59% yield): mp $193-197{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}+57.32^{\circ}$ (c 0.41, methanol); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 1.26(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.02(\mathrm{dq}, J=10.4,6.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.88(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{t}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.56-3.69(\mathrm{~m}$, $2 \mathrm{H}), 4.37(\mathrm{~s}, 2 \mathrm{H}), 7.00(\mathrm{dd}, J=7.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.28(\mathrm{~m}, 5 \mathrm{H})$, $7.68(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.32(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.42(\mathrm{~s}, 1 \mathrm{H}), 12.37$ (br s, 1 H). Anal. $\left(\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{ClN}_{4} \mathrm{O}_{4} \mathrm{~S}\right)$ calcd C 54.72%, H 4.59%, N 12.15%; found C 54.40%, H 4.62%, N 12.22%.
(1S,2R,3R)-1-(2-Chloro-5,6,7,8-tetrahydrothieno[3' $\left., 2^{\prime}: 4,5\right]$ pyrrolo[1,2-a]pyrazine-7-sulfonylamino)-2-methyl-3-phenylcyclopropanecarboxylic Acid (11d). 11d was prepared by coupling of 26 with 46 (vide infra) following the procedures described for 9 a . The product was purified by trituration with methanol $/ \mathrm{H}_{2} \mathrm{O}$ to yield 11 d as a white solid (75% yield): mp $95{ }^{\circ} \mathrm{C}$; $[\alpha]^{20}{ }_{\mathrm{D}}+65.88^{\circ}$ (c 0.17, THF); ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) $\delta 1.25(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}), 2.02(\mathrm{dq}, J=10.5,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{t}, J=$ $5.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.01(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H}), 6.20(\mathrm{~s}, 1 \mathrm{H}), 7.10(\mathrm{~s}$, 1 H), $7.15-7.28(\mathrm{~m}, 6 \mathrm{H}), 8.57$ (br s, 1 H$)$. Anal. $\left(\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{ClN}_{3} \mathrm{O}_{4} \mathrm{~S}_{2}\right)$ calcd C 51.55%, H 4.33%, N 9.02%; found C 51.50%, H $4.63 \%, \mathrm{~N} 8.80 \%$.
(1S,2R,3R)-1-(6-Chloro-2,3-dihydro-1H-pyrrolo[3', $\left.4^{\prime}: 4,5\right]$ imidazo[1,2-a]pyridine-2-sulfonylamino)-2-methyl-3-phenylcyclopropanecarboxylic Acid Hydrochloride (11e). 11e was prepared by coupling of 26 with 43 (vide infra) following the procedures described for 9 a. The product was purified by trituration with $\mathrm{EtOAc} /$ methanol to yield 11e as a white solid (22% yield): mp $176-181^{\circ} \mathrm{C} ;[\alpha]^{20}{ }_{\mathrm{D}}+65.33^{\circ}\left(c 0.15\right.$, methanol); ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 1.28(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.03-2.13(\mathrm{~m}, 1 \mathrm{H}), 2.89(\mathrm{~d}$, $J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.49-4.63(\mathrm{~m}, 2 \mathrm{H}), 4.67-4.79(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.23$ $(\mathrm{m}, 4 \mathrm{H}), 7.23-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.55(\mathrm{~s}, 1 \mathrm{H}), 8.61$ $(\mathrm{d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$. Anal. $\left(\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{ClN}_{4} \mathrm{O}_{4} \mathrm{~S} \cdot \mathrm{HCl} \cdot 1.25\right.$ methanol) calcd C 48.76%, H 4.81%, N 10.70%; found C 48.79%, H 4.77%, N 10.45%.
(1S,2R,3R)-2-Methyl-3-phenyl-1-(1,2,3,4-tetrahydropyrazino-[1,2-a]benzimidazole-2-sulfonylamino)cyclopropanecarboxylic Acid Hydrochloride (12a). 12a was prepared by coupling of 26 with 1,2,3,4-tetrahydropyrazino[1,2-a] benzimidazole ${ }^{29 b}$ following the procedure described for 9 a . The product was purified by trituration with EtOAc to yield 12a as a white solid (43\% yield): mp $182-186{ }^{\circ} \mathrm{C} ;[\alpha]^{20}{ }_{\mathrm{D}}+64.22^{\circ}\left(c 0.18\right.$, methanol); ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $\left.d_{6}\right) \delta 1.28(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.08(\mathrm{dq}, J=10.5,6.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.96(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.36-4.46(\mathrm{~m}, 2 \mathrm{H})$, $4.84(\mathrm{~s}, 2 \mathrm{H}), 7.17-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.56$ $(\mathrm{m}, 2 \mathrm{H}), 7.80-7.87(\mathrm{~m}, 2 \mathrm{H}), 8.95(\mathrm{~s}, 1 \mathrm{H})$. Anal. $\left(\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}\right.$.
$\left.\mathrm{HCl} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right)$ calcd C $53.44 \%, \mathrm{H} 5.13 \%, \mathrm{~N} 11.87 \%$; found C $53.62 \%, \mathrm{H}$ 5.34\%, N 11.67\%.
(1S,2R,3R)-1-(8-Fluoro-1,2,3,4-tetrahydropyrazino[1,2-a]-benzimidazole-2-sulfonylamino)-2-methyl-3-phenylcyclopropanecarboxylic Acid Hydrochloride (12b). 12b was prepared by coupling of 26 with 8 -fluoro-1,2,3,4-tetrahydropyrazino[1,2a]benzimidazole ${ }^{29 b}$ following the procedures described for 9a. The product was purified by trituration with EtOAc to yield $\mathbf{1 2 b}$ as a white solid (67% yield): mp $190-193^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}+73.33^{\circ}(c 0.18$, methanol); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 1.27(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.02-2.11$ $(\mathrm{m}, 1 \mathrm{H}), 2.95(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-3.89(\mathrm{~m}, 2 \mathrm{H}), 4.37(\mathrm{t}, J=5.2$ $\mathrm{Hz}, 2 \mathrm{H}), 4.78(\mathrm{~s}, 2 \mathrm{H}), 7.16-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.36(\mathrm{td}, J=9.4,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.65 (dd, $J=9.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{dd}, J=8.9,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.90(\mathrm{~s}, 1 \mathrm{H})$. Anal. $\left(\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{FN}_{4} \mathrm{O}_{4} \mathrm{~S} \cdot \mathrm{HCl}\right)$ calcd $\mathrm{C} 52.45 \%$, $\mathrm{H} 4.61 \%$, N 11.65\%; found C $52.21 \%, \mathrm{H} 4.71 \%, \mathrm{~N} 11.58 \%$.
(1S,2R,3R)-1-(7-Fluoro-1,2,3,4-tetrahydropyrazino[1,2-a]-benzimidazole-2-sulfonylamino)-2-methyl-3-phenylcyclopropanecarboxylic Acid Hydrochloride (12c). 12c was prepared by coupling of 26 with 7-fluoro-1,2,3,4-tetrahydropyrazino[1,2a]benzimidazole ${ }^{29 b}$ following the procedures described for 9 a . The product was purified by trituration with EtOAc to yield 12c as a white solid (62% yield): mp $170{ }^{\circ} \mathrm{C} ;[\alpha]^{20}{ }_{\mathrm{D}}+68.89^{\circ}$ (c 0.18, methanol); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 1.27(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.02-2.11(\mathrm{~m}$, $1 \mathrm{H}), 2.95(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-3.88(\mathrm{~m}, 2 \mathrm{H}), 4.30-4.34(\mathrm{~m}, 2 \mathrm{H})$, $4.76(\mathrm{~s}, 2 \mathrm{H}), 7.18-7.35(\mathrm{~m}, 6 \mathrm{H}), 7.73(\mathrm{dd}, J=8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{dd}$, $J=8.9,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.90(\mathrm{~s}, 1 \mathrm{H})$. Anal. $\left(\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{FN}_{4} \mathrm{O}_{4} \mathrm{~S} \cdot \mathrm{HCl} \cdot \mathrm{H}_{2} \mathrm{O}\right)$ calcd C 50.55%, H 4.85%, N 11.23\%; found C 50.69%, H 5.22%, N 10.89\%.
(1S,2R,3R)-1-(8-Cyano-1,2,3,4-tetrahydropyrazino[1,2-a]-benzimidazole-2-sulfonylamino)-2-methyl-3-phenylcyclopropanecarboxylic Acid Hydrochloride (12d). 12d was prepared by coupling of 26 with 1,2,3,4-tetrahydropyrazino[1,2-a]-benzimidazole-8-carbonitrile ${ }^{29 \mathrm{~b}}$ following the procedures described for 9a. The product was purified by trituration with $\mathrm{EtOAc} /$ methanol to yield 12 d as a white solid (41% yield): mp $151^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{20}+62.22^{\circ}(c$ 0.18 , methanol); ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 1.26(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $3 \mathrm{H}), 2.05(\mathrm{dq}, J=10.5,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.79-3.86(\mathrm{~m}, 2 \mathrm{H}), 4.30(\mathrm{t}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.65(\mathrm{~s}, 2 \mathrm{H}), 7.16-7.31(\mathrm{~m}$, $5 \mathrm{H}), 7.66(\mathrm{dd}, J=8.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=$ $0.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.78(\mathrm{~s}, 1 \mathrm{H})$. Anal. $\left(\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{~S} \cdot \mathrm{HCl} \cdot 0.75\right.$ methanol) calcd C 53.37%, H 4.92\%, N 13.68\%; found C 53.34\%, H 4.63\%, N 13.53\%.
(1S,2R,3R)-2-Methyl-1-(8-methyl-1,2,3,4-tetrahydro-pyrazino[1,2-a]benzimidazole-2-sulfonylamino)-3-phenylcyclopropanecarboxylic Acid (12e). 12e was prepared by coupling of 26 with 8 -methyl-1,2,3,4-tetrahydropyrazino[1,2-a]benzimidazole ${ }^{29 b}$ following the procedures described for 9 a . The product was purified by trituration with $\mathrm{DMSO} / \mathrm{H}_{2} \mathrm{O}$ to yield 12 e as a white solid (63% yield): mp $185-189{ }^{\circ} \mathrm{C}$; $[\alpha]^{20}{ }_{\mathrm{D}}+55.26^{\circ}$ (c 0.19, methanol); ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 1.28(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.02-2.12(\mathrm{~m}$, $1 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 2.95(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{t}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H})$, $4.34-4.39(\mathrm{~m}, 2 \mathrm{H}), 4.80(\mathrm{~s}, 2 \mathrm{H}), 7.16-7.37(\mathrm{~m}, 6 \mathrm{H}), 7.61(\mathrm{~s}, 1 \mathrm{H}), 7.70$ $(\mathrm{d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.94(\mathrm{~s}, 1 \mathrm{H})$. Anal. $\left(\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S} \cdot 1.25 \mathrm{DMSO}\right)$ calcd C 54.67%, H 5.90%, N 10.41\%; found C 54.23%, H 6.03%, N 10.34\%.
(1S,2R,3R)-1-(8-Methoxy-1,2,3,4-tetrahydropyrazino[1,2-a]benzimidazole-2-sulfonylamino)-2-methyl-3-phenylcyclopropanecarboxylic Acid Hydrochloride (12f). 12 f was prepared by coupling of 26 with 8 -methoxy-1,2,3,4-tetrahydropyrazino[1,2a]benzimidazole ${ }^{29 b}$ following the procedures described for 9 a . The product was purified by trituration with EtOAc to yield $\mathbf{1 2 f}$ as a white solid (79% yield): mp $170{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{20}+66.67^{\circ}$ (c 0.18, methanol); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 1.28(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.02-2.11$ $(\mathrm{m}, 1 \mathrm{H}), 2.95(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-3.86(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H})$,
4.32-4.38 (m, 2H), 4.78 (s, 2H), 7.13 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.22$ $(\mathrm{m}, 3 \mathrm{H}), 7.24-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.68-7.73(\mathrm{~m}, 1 \mathrm{H}), 8.91(\mathrm{~s}, 1 \mathrm{H})$. Anal. $\left(\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S} \cdot \mathrm{HCl} \cdot \mathrm{H}_{2} \mathrm{O}\right)$ calcd C 51.71%, H 5.33\%, N 10.96\%; found C 51.43%, H 5.50\%, N 10.65\%.
(1S,2R,3R)-1-(8-Fluoro-1,2,3,4-tetrahydropyrido[3', $\left.4^{\prime}: 4,5\right]$ imidazo[1,2-a]pyridine-2-sulfonylamino)-2-methyl-3-phenylcyclopropanecarboxylic Acid (12g). 12g was prepared by coupling of 26 with $\mathbf{3 8 b}$ (vide infra) following the procedures described for 9 a . The product was purified by trituration with methanol $/ \mathrm{H}_{2} \mathrm{O}$ to yield 12 g as a white solid (65% yield): mp $212-214^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}+58.53^{\circ}$ (c 0.095, methanol); ${ }^{1} \mathrm{H}$ NMR (300 MHz , methanol- d_{4}) $\delta 1.36(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.21(\mathrm{dq}, J=10.5,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.02-3.13(\mathrm{~m}, 3 \mathrm{H}), 3.86$ $(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.62-4.67(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.47(\mathrm{td}$, $J=7.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.59-7.67(\mathrm{~m}, 1 \mathrm{H}), 7.76(\mathrm{dd}$, $J=8.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.70(\mathrm{dd}, J=7.3,5.1 \mathrm{~Hz}, 1 \mathrm{H})$. Anal. $\left(\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{FN}_{4} \mathrm{O}_{4} \mathrm{~S}\right)$ calcd $\mathrm{C} 56.75 \%, \mathrm{H} 4.76 \%, \mathrm{~N} 12.61 \%$; found C 56.41%, H 4.82\%, N 12.46\%.
(1S,2R,3R)-1-(7-Fluoro-1,2,3,4-tetrahydropyrido[3'4':3,4] pyrazolo[1,5-a]pyridine-2-sulfonylamino)-2-methyl-3-phenylcyclopropanecarboxylic Acid (12h). 12h was prepared by coupling of 26 with 7-fluoro-1,2,3,4-tetrahydropyrido[3'4':3,4]pyrazolo $[1,5-a]$ pyridine 51 following the procedures described for 9 a . The product was purified by trituration with methanol $/ \mathrm{H}_{2} \mathrm{O}$ to yield 12h as a white solid (49% yield): mp $205-209{ }^{\circ} \mathrm{C}$; $[\alpha]^{20}{ }_{D}+101.88^{\circ}$ (c 0.16, THF); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 1.25(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}), 2.03(\mathrm{dq}, J=10.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.90(\mathrm{~d}$, $J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{q}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.43(\mathrm{~s}, 2 \mathrm{H}), 7.16-7.32(\mathrm{~m}$, $6 \mathrm{H}), 7.65(\mathrm{dd}, J=9.8,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{~s}, 1 \mathrm{H}), 8.89(\mathrm{dd}, J=5.0,2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 12.34$ (br s, 1 H). Anal. $\left(\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{FN}_{4} \mathrm{O}_{4} \mathrm{~S}\right)$ calcd C 56.75%, H 4.76\%, N 12.61%; found C $56.74 \%, \mathrm{H} 4.90 \%$, N 12.41%.
(1S,2R,3R)-1-(7-Fluoro-1,2,3,4-tetrahydro-9H-pyrido[3,4-b]indole-2-sulfonylamino)-2-methyl-3-phenylcyclopropanecarboxylic Acid (12i). 12i was prepared by coupling of 26 with 7-fluoro-1,2,3,4-tetrahydro-9H-pyrido [3,4-b] indole ${ }^{29 \mathrm{c}}$ following the procedure described for 9 a . The product was purified by trituration with methanol $/ \mathrm{H}_{2} \mathrm{O}$ to yield 12 i as a white solid (18% yield): mp $150-152^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}+73.64^{\circ}\left(c 0.22\right.$, methanol); ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, DMSO- $\left.d_{6}\right) \delta 1.26(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.98-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.72-2.78$ $(\mathrm{m}, 2 \mathrm{H}), 2.89(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.35(\mathrm{~s}, 2 \mathrm{H})$, $6.79-6.84(\mathrm{~m}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=10.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.28(\mathrm{~m}, 5 \mathrm{H})$, $7.37(\mathrm{dd}, J=8.6,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.38(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 10.96(\mathrm{~s}, 1 \mathrm{H}), 12.37(\mathrm{br} \mathrm{s}$, $1 \mathrm{H})$. Anal. $\left(\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{FN}_{3} \mathrm{O}_{4} \mathrm{~S} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}\right)$ calcd C 58.98%, H 5.06%, N 9.38\%; found C 58.76%, H 5.24\%, N 9.21%.

7-Chloro-3-methoxycarbonylmethylimidazo[1,2-a]pyridine-2-carboxylic Acid Methyl Ester (35a). A mixture of 34a (11.0 g, 85.6 mmol) and 3-bromo-2-oxopentanedioic acid dimethyl ester (30.3 g, 120 mmol$)$ in ethanol $(200 \mathrm{~mL})$ was heated at $100^{\circ} \mathrm{C}$ for 12 h . After concentration, the crude product was purified by flash chromatography ($\mathrm{CHCl}_{3} /$ methanol 20:1) to give 35 a as a yellow oil ($11.8 \mathrm{~g}, 49 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 4.45(\mathrm{~s}, 2 \mathrm{H})$, 6.92 (dd, $J=7.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{dd}, J=2.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{dd}$, $J=7.5,0.9 \mathrm{~Hz}, 1 \mathrm{H})$.

7-Fluoro-3-methoxycarbonylmethylimidazo[1,2-a]pyridine-2-carboxylic Acid Methyl Ester (35b). 35b was prepared from 34b following the procedure described for 35 a . Yellow oil (39% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 4.45(\mathrm{~s}, 2 \mathrm{H})$, $6.80-6.86(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.98-8.04(\mathrm{~m}, 1 \mathrm{H})$.

2-(7-Chloro-2-hydroxymethylimidazo[1,2-a]pyridin-3-yl) ethanol (36a). To a solution of $35 \mathrm{a}(4.66 \mathrm{~g}, 16.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(100 \mathrm{~mL})$ was added 1 M DIBAL- H in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(99 \mathrm{~mL}, 99 \mathrm{mmol})$ dropwise at $0^{\circ} \mathrm{C}$. After being stirred for 2 h , the mixture was diluted with a saturated solution of Rochelle's salt and extracted with CHCl_{3}. The organic layer was dried over MgSO_{4} and concentrated. The thus obtained crude product was purified by flash chromatography $\left(\mathrm{CHCl}_{3}\right)$
methanol 9:1) to give 36a as a pale yellow oil ($2.84 \mathrm{~g}, 76 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 3.12(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.63(\mathrm{dt}, J=6.2$, $5.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.55(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.81(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{t}, J=$ $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{dd}, J=7.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{dd}, J=2.2,0.7 \mathrm{~Hz}, 1 \mathrm{H})$, 8.42 (dd, $J=7.3,0.7 \mathrm{~Hz}, 1 \mathrm{H})$.

2-(7-Fluoro-2-hydroxymethylimidazo[1,2-a]pyridin-3-yl) ethanol (36b). 36b was prepared from $\mathbf{3 5 b}$ following the procedures described for 36a. Yellow oil (76% yield); ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.d_{6}\right) \delta 3.11(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.58-3.66(\mathrm{~m}, 2 \mathrm{H}), 4.53(\mathrm{~d}, J=5.6 \mathrm{~Hz}$, $2 \mathrm{H}), 4.80(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.86-6.97(\mathrm{~m}$, $1 \mathrm{H}), 7.22-7.33(\mathrm{~m}, 1 \mathrm{H}), 8.39-8.48(\mathrm{~m}, 1 \mathrm{H})$.

Phosphoric Acid 2-(2-Azidomethyl-7-chloroimidazo[1,2-a]pyridin-3-yl)ethyl Ester Diphenyl Ester (37a). To a mixture of 36a ($500 \mathrm{mg}, 2.21 \mathrm{mmol}$) and DBU ($739 \mathrm{mg}, 4.86 \mathrm{mmol}$) in THF $(5.0 \mathrm{~mL})$ was added DPPA $(1.34 \mathrm{~g}, 4.86 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After being stirred at room temperature for 1 h , the mixture was diluted with EtOAc and washed with $\mathrm{H}_{2} \mathrm{O}$. The organic layer was dried over MgSO_{4} and concentrated. The thus obtained crude product was purified by flash chromatography (n-hexane/EtOAc $2: 1$) to give 37 a as a yellow oil (851 $\mathrm{mg}, 80 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.33(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H})$, $4.39-4.47(\mathrm{~m}, 4 \mathrm{H}), 6.71(\mathrm{dd}, J=7.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $4 \mathrm{H}), 7.15-7.42(\mathrm{~m}, 6 \mathrm{H}), 7.54(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, 1H).

Phosphoric Acid 2-(2-Azidomethyl-7-fluoroimidazo[1,2-a]pyridin-3-yl)ethyl Ester Diphenyl Ester (37b). 37b was prepared from 36b following the procedures described for 37 a. Yellow oil (70% yield); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.33(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H})$, $4.36-4.50(\mathrm{~m}, 4 \mathrm{H}), 6.59-6.66(\mathrm{~m}, 1 \mathrm{H}), 7.07-7.22(\mathrm{~m}, 6 \mathrm{H})$, $7.24-7.37(\mathrm{~m}, 5 \mathrm{H}), 7.92-7.99(\mathrm{~m}, 1 \mathrm{H})$.

8-Chloro-1,2,3,4-tetrahydropyrido[3' , 4':4,5]imidazo[1,2-a] pyridine (38a). A mixture of $37 \mathrm{a}(850 \mathrm{mg}, 1.76 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(600$ $\mathrm{mg}, 2.29 \mathrm{mmol})$ in THF $/ \mathrm{H}_{2} \mathrm{O}=10: 1(11 \mathrm{~mL})$ was heated at $60^{\circ} \mathrm{C}$ for 4 h. After the mixture was cooled to room temperature, $\mathrm{Boc}_{2} \mathrm{O}$ (768 mg , 3.52 mmol) and DMAP ($22 \mathrm{mg}, 0.176 \mathrm{mmol}$) were added to the mixture, which was then stirred at room temperature for 12 h . The mixture was diluted with EtOAc, washed with brine, and dried over MgSO_{4}. After concentration, the residue was purified by flash chromatography (n-hexane/EtOAc 1:1) to give the corresponding tricycle (352 $\mathrm{mg}, 65 \%$ yield) as a white solid, which was successively treated with 4 M HCl in 1,4-dioxane (4.0 mL) at room temperature for 12 h . The solvent was removed in vacuo, and the crude product was neutralized with NaO -t-Bu ($219 \mathrm{mg}, 2.28 \mathrm{mmol}$) in THF $(4.0 \mathrm{~mL})$. After filtration of the resultant precipitates, the filtrate was concentrated to give 38 a as a white solid ($234 \mathrm{mg}, 99 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 2.91$ (br s, $2 \mathrm{H}), 3.24(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.01(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 7.00(\mathrm{dd}, J=7.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.66$ (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.34(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$.

8-Fluoro-1,2,3,4-tetrahydropyrido[3', $\left.4^{\prime}: 4,5\right]$ imidazo[1,2-a] pyridine (38b). 38b was prepared from $\mathbf{3 7 b}$ following the procedure described for 38a. Pale yellow solid (70% yield); ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO $\left.-d_{6}\right) \delta 2.73(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.05(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{br} \mathrm{s}$, $2 \mathrm{H}), 6.89-6.97(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.34(\mathrm{~m}, 1 \mathrm{H}), 8.26-8.32(\mathrm{~m}, 1 \mathrm{H})$.

7-Chloroimidazo[1,2-a]pyridine-2,3-dicarboxylic Acid Diethyl Ester (39). A mixture of $34 \mathrm{a}(1.15 \mathrm{~g}, 8.98 \mathrm{mmol}$) and 2-chloro-3oxosuccinic acid diethyl ester ($1.00 \mathrm{~g}, 4.49 \mathrm{mmol}$) in ethanol (10 mL) was heated at $100{ }^{\circ} \mathrm{C}$ for 12 h . After concentration, the crude product was purified by flash chromatography (n-hexane/EtOAc 20:1) to give 39 as a white solid ($982 \mathrm{mg}, 74 \%$ yield based on 2-chloro-3-oxosuccinic acid diethyl ester). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.40(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $1.44(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 4.43(\mathrm{q}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.48(\mathrm{q}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H})$, 7.08 (dd, $J=7.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.75$ (dd, $J=2.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 9.21$ (dd, $J=7.5,0.9 \mathrm{~Hz}, 1 \mathrm{H})$.

7-Chloro-2-hydroxymethylimidazo[1,2-a]pyridine-3-carboxylic Acid Ethyl Ester (40). To a solution of 39 (980 mg, 3.30 $\mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ was added 1 M DIBAL-H in toluene $(4.0 \mathrm{~mL}$,
4.0 mmol) dropwise at $-78^{\circ} \mathrm{C}$. After being stirred for 2 h , the mixture was diluted with saturated solution of Rochelle's salt and extracted with CHCl_{3}. The organic layer was dried over MgSO_{4} and concentrated. The resultant aldehyde was treated with $\mathrm{NaBH}_{4}(62 \mathrm{mg}, 1.63 \mathrm{mmol})$ in methanol $(8.2 \mathrm{~mL})$ at room temperature. After being stirred for 2 h , the reaction was neutralized with $2 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ and extracted with CHCl_{3}. The organic layer was dried over MgSO_{4} and concentrated. The thus obtained crude product was purified by trituration with n-hexane/ EtOAc to give 40 as a white solid ($786 \mathrm{mg}, 94 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.45(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 4.45(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $5.05(\mathrm{~s}, 2 \mathrm{H}), 7.03(\mathrm{dd}, J=7.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 9.22$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$.
[7-Chloro-2-(tetrahydropyran-2-yloxymethyl)imidazo[1,2-a] pyridin-3-yl]methanol (41). A mixture of 40 ($786 \mathrm{mg}, 3.09 \mathrm{mmol}$), dihydropyrane $(1.41 \mathrm{~mL}, 15.5 \mathrm{mmol})$, and $\mathrm{In}(\mathrm{OTf})_{3}(84 \mathrm{mg}, 0.15$ $\mathrm{mmol})$ in $\mathrm{CHCl}_{3}(8.0 \mathrm{~mL})$ was heated at $80^{\circ} \mathrm{C}$ for 12 h . After the solvent was removed in vacuo, the residue was purified by flash chromatography (n-hexane/EtOAc 3:1) to give the corresponding THP-protected ether as a pale yellow solid ($868 \mathrm{mg}, 83 \%$ yield), which was further dissolved in $\mathrm{Et}_{2} \mathrm{O}(9.0 \mathrm{~mL})$ and transferred to a suspension of $\mathrm{LiAlH}_{4}(97 \mathrm{mg}, 2.56$ $\mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(4.0 \mathrm{~mL})$ dropwise at $0{ }^{\circ} \mathrm{C}$. After the mixture was stirred for 1 h , the reaction was quenched by an addition of $15 \% \mathrm{NaOH}$ $(0.10 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.40 \mathrm{~mL})$, and the resultant precipitate was removed by filtration. The filtrate was concentrated, and the residue was purified by flash chromatography $\left(\mathrm{CHCl}_{3} /\right.$ methanol $\left.20: 1\right)$ to give 41 as a white solid ($632 \mathrm{mg}, 83 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 1.40-1.76(\mathrm{~m}, 6 \mathrm{H}), 3.44-3.54(\mathrm{~m}, 1 \mathrm{H}), 3.78-3.87(\mathrm{~m}, 1 \mathrm{H}), 4.56(\mathrm{~d}$, $J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.71-4.74(\mathrm{~m}, 1 \mathrm{H}), 4.74(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~d}$, $J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.21(\mathrm{t}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{dd}, J=7.3,2.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.70 (dd, $J=2.2,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.41$ (dd, $J=7.3,0.6 \mathrm{~Hz}, 1 \mathrm{H})$.

3-tert-Butoxycarbonylaminomethyl-7-chloro-2-(tetrahydro-pyran-2-yloxymethyl)imidazo[1,2-a]pyridine (42). To a solution of $41(632 \mathrm{mg}, 2.12 \mathrm{mmol})$ in THF $(6.3 \mathrm{~mL})$ were added DPPA (762 mg , $2.77 \mathrm{mmol})$ and DBU ($422 \mathrm{mg}, 2.77 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. After the mixture was stirred at room temperature for $12 \mathrm{~h}, \mathrm{PPh}_{3}(838 \mathrm{mg}, 3.20 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}$ $(1.1 \mathrm{~mL})$ were added to the mixture, which was then heated at $60^{\circ} \mathrm{C}$ for 4 h . $\mathrm{Boc}_{2} \mathrm{O}(929 \mathrm{mg}, 4.26 \mathrm{mmol})$ and DMAP ($13 \mathrm{mg}, 0.106 \mathrm{mmol}$) were added to this solution, and the mixture was stirred at room temperature for 12 h . The mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with CHCl_{3}. The organic layer was dried over MgSO_{4} and concentrated. The thus obtained crude product was purified by flash chromatography (n-hexane/EtOAc 1:1) to give 42 as a white solid ($498 \mathrm{mg}, 59 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.51-1.89(\mathrm{~m}, 6 \mathrm{H}), 3.52-3.61(\mathrm{~m}, 1 \mathrm{H}), 3.85-3.94(\mathrm{~m}$, $1 \mathrm{H}), 4.65-4.73(\mathrm{~m}, 3 \mathrm{H}), 4.73(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=12.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.17(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.81(\mathrm{dd}, J=7.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $8.35(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$.

6-Chloro-2,3-dihydro-1H-pyrrolo[3' $\left.\mathbf{4}^{\prime}: 4,5\right]$ imidazo[1,2-a] pyridine (43). A solution of $42(498 \mathrm{mg}, 1.26 \mathrm{mmol})$ in $\mathrm{AcOH} / \mathrm{H}_{2} \mathrm{O}$ ($1: 1,5.0 \mathrm{~mL}$) was heated at $100^{\circ} \mathrm{C}$ for 1 h . The mixture was neutralized with 4 M NaOH and triturated by addition of n-hexane/EtOAc to afford the corresponding alcohol as a white solid ($282 \mathrm{mg}, 72 \%$ yield). To a solution of this compound in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.8 \mathrm{~mL}), \mathrm{CBr}_{4}(360 \mathrm{mg}, 1.09$ $\mathrm{mmol})$ and $\mathrm{PPh}_{3}(286 \mathrm{mg}, 1.09 \mathrm{mmol})$ were added. The mixture was stirred at room temperature for 1 h . After concentration, the residue was purified by flash chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{EtOAc} 2: 1\right)$ to give the corresponding bromide ($275 \mathrm{mg}, 81 \%$ yield), which was further treated with $60 \% \mathrm{NaH}(44 \mathrm{mg}, 1.10 \mathrm{mmol})$ in DMSO $(34 \mathrm{~mL})$ at $90^{\circ} \mathrm{C}$ for 10 min. The mixture was diluted with ice-water and extracted with EtOAc. The organic layer was dried over MgSO_{4} and concentrated. The thus obtained residue was purified by preparative $\mathrm{TLC}\left(\mathrm{CHCl}_{3} / \mathrm{EtOAc} 1: 1\right)$ to give the cyclized product as a white solid ($54 \mathrm{mg}, 25 \%$ yield). This product was treated with 4 M HCl in 1,4-dioxane (1.0 mL) at room temperature for 12 h . The solvent was removed in vacuo, and the crude product was diluted by THF (3.0 mL) and neutralized with $\mathrm{NaO}-t-\mathrm{Bu}$
$(35 \mathrm{mg}, 0.364 \mathrm{mmol})$. After filtration of the resultant precipitate, the filtrate was concentrated to give 43 as a white solid ($32 \mathrm{mg}, 90 \%$ yield). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.21(\mathrm{t}, J=2.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.32(\mathrm{t}, J=2.6$ $\mathrm{Hz}, 2 \mathrm{H}), 6.81(\mathrm{dd}, J=7.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{dd}, J=2.1,0.7 \mathrm{~Hz}, 1 \mathrm{H})$, 7.77 (dd, $J=7.2,0.7 \mathrm{~Hz}, 1 \mathrm{H})$.

2-Chloro-5,6,7,8-tetrahydrothieno[3',2':4,5]pyrrolo[1,2-a]pyrazine-5-one (45). To a solution of $44(800 \mathrm{mg}, 3.48 \mathrm{mmol})$ in DMF (8.0 mL) was added $60 \% \mathrm{NaH}(153 \mathrm{mg}, 3.83 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After the mixture was stirred at the same temperature for 15 min , 3-tert-butoxycarbonyl-2,2-dioxo[1,2,3] oxathiazolidine ${ }^{31}$ ($894 \mathrm{mg}, 4.00 \mathrm{mmol}$) was added to the mixture, which was then stirred at room temperature for 12 h . The mixture was diluted with EtOAc , washed with saturated solution of NaHCO_{3}, and dried over MgSO_{4}. After concentration, the residue was diluted with $\mathrm{CHCl}_{3}(14 \mathrm{~mL})$ and treated with TFA $(4.0 \mathrm{~mL})$ at room temperature for 2 h . The mixture was concentrated, and the residue was again diluted with THF/methanol ($1: 1,54 \mathrm{~mL}$) and treated with $\mathrm{K}_{2} \mathrm{CO}_{3}(3.00 \mathrm{~g}, 21.7 \mathrm{mmol})$ at room temperature for 12 h . The mixture was diluted with EtOAc, washed with 5% solution of KHSO_{4}, and dried over MgSO_{4}. After concentration, the crude product was purified by trituration with n-hexane to give 45 as a white solid $(630 \mathrm{mg}$, 80% yield). ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) $\delta 3.52-3.61(\mathrm{~m}, 2 \mathrm{H}), 4.17$ $(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$.

2-Chloro-5,6,7,8-tetrahydrothieno[3' $\left.\mathbf{2}^{\prime}: 4,5\right]$ pyrrolo[1,2-a] pyrazine (46). To a solution of $45(630 \mathrm{mg}, 2.78 \mathrm{mmol})$ in THF $(6.3 \mathrm{~mL})$ was added $1 \mathrm{M} \mathrm{BH}_{3} \cdot$ THF $(22.2 \mathrm{~mL}, 22.2 \mathrm{mmol})$. After being stirred at $60^{\circ} \mathrm{C}$ for 3 h , the mixture was poured into a saturated solution of NaHCO_{3} at $0^{\circ} \mathrm{C}$ and extracted with EtOAc . The organic layer was washed with brine, dried over MgSO_{4}, and concentrated. The thus obtained crude product was purified by flash chromatography $\left(\mathrm{CHCl}_{3} /\right.$ methanol 10:1) to give 46 as a white solid ($37 \mathrm{mg}, 6.3 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 3.09(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H})$, $3.90(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.99(\mathrm{t}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H})$.

6-Fluoro-2-(tetrahydropyran-2-yloxymethyl)pyrazolo[1,5-a] pyridine-3-carbaldehyde (48). To a solution of $47^{33}(50 \mathrm{~g}, 160 \mathrm{mmol})$ in DMF $(500 \mathrm{~mL})$ were added 4 -(tetrahydropyran-2-yloxy)but-2-ynal ${ }^{34}$ $(40.4 \mathrm{~g}, 240 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(28.8 \mathrm{~g}, 208 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After being stirred at room temperature for 12 h , the mixture was poured into ice-water and extracted with EtOAc. The organic layer was dried over MgSO_{4} and concentrated. The thus obtained residue was purified by flash chromatography (n-hexane $/ E t O A c 5: 1$) to give 48 as a yellow solid ($5.59 \mathrm{~g}, 13 \%$ yield). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.50-1.90(\mathrm{~m}, 6 \mathrm{H}), 3.56-3.64(\mathrm{~m}, 1 \mathrm{H})$, $3.87-3.95(\mathrm{~m}, 1 \mathrm{H}), 4.83(\mathrm{t}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.18$ $(\mathrm{d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.46(\mathrm{~m}, 1 \mathrm{H}), 8.32(\mathrm{ddd}, J=9.7,5.6,0.7 \mathrm{~Hz}, 1 \mathrm{H})$, 8.46 (ddd, $J=3.7,2.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 10.25$ (s, 1H).

2-[6-Fluoro-2-(tetrahydropyran-2-yloxymethyl)pyrazolo-[1,5-a]pyridin-3-yl]ethylamine (49). A mixture of 48 ($5.50 \mathrm{~g}, 19.8$ mmol) and ammonium acetate ($762 \mathrm{mg}, 9.89 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{NO}_{2}$ $(44 \mathrm{~mL})$ was heated at $100^{\circ} \mathrm{C}$ for 2 h . The mixture was diluted with a saturated aqueous solution of NaHCO_{3} and extracted with EtOAc. The organic layer was dried over MgSO_{4} and concentrated. The thus obtained residue was purified by flash chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{EtOAc}\right.$ $10: 1$) to give the corresponding nitroolefin as a yellow solid ($4.55 \mathrm{~g}, 72 \%$ yield). A solution of this compound in THF (140 mL) was added to a suspension of $\mathrm{LiAlH}_{4}(2.69 \mathrm{~g}, 70.8 \mathrm{mmol})$ in THF $(50 \mathrm{~mL})$ dropwise at $0^{\circ} \mathrm{C}$. After being stirred at room temperature for 4 h , the mixture was diluted with a saturated solution of Rochelle's salt and extracted with EtOAc. The organic layer was dried over MgSO_{4} and concentrated to give 49 as a yellow oil ($4.12 \mathrm{~g}, 99 \%$ yield). ${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(} 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.47-1.90(\mathrm{~m}, 6 \mathrm{H}), 2.87-3.00(\mathrm{~m}, 4 \mathrm{H}), 3.52-3.64(\mathrm{~m}, 1 \mathrm{H})$, $3.89-4.00(\mathrm{~m}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{t}, J=3.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.96(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-7.06(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.47(\mathrm{~m}, 1 \mathrm{H})$, 8.34 (ddd, $J=4.3,2.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}$).

3-(2-tert-Butoxycarbonylaminoethyl)-6-fluoro-2-hydro-xymethylpyrazolo[1,5-a]pyridine (50). To a solution of 49
$(4.12 \mathrm{~g}, 14.0 \mathrm{mmol})$ in THF $(60 \mathrm{~mL})$ was added $\mathrm{Boc}_{2} \mathrm{O}(3.71 \mathrm{~g}, 17.0$ mmol), and the mixture was stirred at room temperature for 12 h . The mixture was diluted with a saturated solution of NaHCO_{3} and extracted with EtOAc . The organic layer was dried over MgSO_{4} and concentrated. The thus obtained residue was purified by flash chromatography (n-hexane/EtOAc $3: 1$) to give the corresponding Boc-protected amine $(1.82 \mathrm{~g}, 33 \%$ yield). The product was further treated with $1 \mathrm{M} \mathrm{HCl}(18 \mathrm{~mL})$ in 1,4-dioxane $(36 \mathrm{~mL})$ at room temperature for 2 h . After neutralization with 1 M NaOH , the mixture was extracted with EtOAc. The organic layer was washed with brine, dried over MgSO_{4}, and concentrated. The thus obtained residue was purified by flash chromatography (n-hexane/EtOAc 1:1) to give $\mathbf{5 0}$ as a yellow oil ($1.07 \mathrm{~g}, 75 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.39$ $(\mathrm{s}, 9 \mathrm{H}), 2.95(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.29-3.39(\mathrm{~m}, 2 \mathrm{H}), 4.84(\mathrm{~s}, 2 \mathrm{H}), 4.97$ (br s, 1H), 6.99-7.07 (m, 1H), $7.42(\mathrm{dd}, J=9.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{dd}$, $J=4.3,2.1 \mathrm{~Hz}, 1 \mathrm{H})$.

7-Fluoro-1,2,3,4-tetrahydropyrido[3'4':3,4]pyrazolo[1,5a]pyridine (51). A mixture of $50(1.07 \mathrm{~g}, 3.46 \mathrm{mmol}), \mathrm{CBr}_{4}(1.72 \mathrm{~g}$, $5.19 \mathrm{mmol})$, and $\mathrm{PPh}_{3}(1.18 \mathrm{~g}, 4.50 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was stirred at room temperature for 0.5 h . The mixture was diluted with a saturated solution of NaHCO_{3} and extracted with CHCl_{3}. The organic layer was dried over MgSO_{4} and concentrated. The thus obtained residue was purified by flash chromatography (n-hexane/EtOAc $4: 1$) to give the corresponding bromide ($1.12 \mathrm{~g}, 87 \%$ yield). To a solution of this product in DMF $(22 \mathrm{~mL})$ was added $60 \% \mathrm{NaH}(177 \mathrm{mg}, 4.43 \mathrm{mmol})$. After the mixture was stirred at room temperature for 12 h , the reaction was quenched by an addition of $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc. The organic layer was dried over MgSO_{4} and concentrated. The thus obtained residue was purified by flash chromatography (n-hexane/ EtOAc $6: 1$) to give the cyclized product as a white solid (673 mg , 78% yield). To a solution of this compound in 1,4-dioxane (14 mL) was added 4 M HCl in 1,4-dioxane (14 mL). After being stirred at room temperature for 12 h , the mixture was concentrated in vacuo, neutralized with saturated aqueous solution of NaHCO_{3}, and extracted with EtOAc . The organic layer was dried over MgSO_{4} and concentrated to give 51 as a yellow solid ($437 \mathrm{mg}, 99 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.76$ $(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.18(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.14(\mathrm{~s}, 2 \mathrm{H}), 6.97-7.04(\mathrm{~m}$, $1 \mathrm{H}), 7.32(\mathrm{dd}, J=9.7,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{ddd}, J=4.4,2.2,0.7 \mathrm{~Hz}, 1 \mathrm{H})$.

Mixture of Dimethyl 2-(($\left.2 R^{*}, 3 R^{*}\right)$-3-(Methylthio)-3-phe-nylbutan-2-yl)malonate (rac-53) and Dimethyl 2-((2R*, $\left.3 R^{*}\right)$ -3-(Methylthio)-2-phenylbutan-2-yl)malonate (rac-54). To a solution of dimethyl disulfide $(36.4 \mathrm{~g}, 0.387 \mathrm{~mol})$ in toluene $(350 \mathrm{~mL})$ was added sulfuric chloride ($31.1 \mathrm{~mL}, 0.387 \mathrm{~mol}$) dropwise at $-10^{\circ} \mathrm{C}$, and the mixture was stirred at the same temperature for 5 min . A solution of $52(102 \mathrm{~g}, 0.773 \mathrm{~mol})$ in toluene $(102 \mathrm{~mL})$ was successively added to the mixture at $-40^{\circ} \mathrm{C}$. After being stirred at the same temperature for 1 h, the mixture was concentrated. The thus obtained residual oil in DME $(770 \mathrm{~mL})$ was added to a solution of sodiodimethyl malonate prepared from dimethyl malonate ($337 \mathrm{~g}, 2.55 \mathrm{~mol}$) and $\mathrm{NaO}-t-\mathrm{Bu}(223 \mathrm{~g}, 2.32$ $\mathrm{mol})$ in DME (1.55 L). After the mixture was stirred at room temperature for 12 h , the reaction was neutralized with 4 M HCl and extracted with EtOAc. The organic layer was washed with brine, dried over MgSO_{4}, and concentrated to give a mixture of $\mathrm{rac}-53$ and rac-54 as a yellow oil $\left(214 \mathrm{~g}, 89 \%\right.$ yield). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.08-1.14$ $(\mathrm{m}, 3 \mathrm{H}), 1.64-1.74(\mathrm{~m}, 3 \mathrm{H}), 2.00-2.08(\mathrm{~m}, 3 \mathrm{H}), 3.39-3.68(\mathrm{~m}, 7 \mathrm{H})$, $3.72-3.77(\mathrm{~m}, 1 \mathrm{H}), 7.11-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.40-7.57(\mathrm{~m}, 2 \mathrm{H})$.
($2 R^{*}, 3 R^{*}$)-Dimethyl 2,3-Dimethyl-2-phenylcyclopropane-1,1-dicarboxylate (rac-55). To a mixture of rac-53 and rac-54 $(214 \mathrm{~g}, 0.689 \mathrm{~mol})$ in 1,4-dioxane $(214 \mathrm{~mL})$ was added dimethyl sulfate $(78.4 \mathrm{~mL}, 0.827 \mathrm{~mol})$, and the mixture was stirred at $50^{\circ} \mathrm{C}$ for 12 h . After the mixture was cooled to room temperature, the precipitates were triturated with EtOAc to give a mixture of the corresponding sulfonium salt $(239 \mathrm{~g}, 79 \%$ yield $)$. To a solution of this salt in methanol $(1.1 \mathrm{~L})$ was added $28 \% \mathrm{NaOMe}$ in methanol $(123 \mathrm{~mL})$ dropwise at room
temperature. After being stirred at $70{ }^{\circ} \mathrm{C}$ for 2 h , the mixture was concentrated under reduced pressure and the residue was triturated in $\mathrm{H}_{2} \mathrm{O}$ to give rac-55 as a pale yellow solid ($134 \mathrm{~g}, 93 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.26(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{q}, J=$ $6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 7.13-7.38(\mathrm{~m}, 5 \mathrm{H})$.
($\left.1 R^{*}, 2 S^{*}, 3 S^{*}\right)$-Methyl 1-(tert-Butoxycarbonylamino)-2,3-dimethyl-2-phenylcyclopropanecarboxylate (rac-56). To a solution of rac-55 (7.35 g, 28.0 mmol) in THF/methanol (1:1, $76 \mathrm{~mL})$ was added $4 \mathrm{M} \mathrm{NaOH}(16.8 \mathrm{~mL}, 67.2 \mathrm{mmol})$ at room temperature. After being stirred for 12 h , the mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and washed with diisopropyl ether. The aqueous layer was acidified with 4 M HCl and extracted with EtOAc twice. The combined organic layers were dried over MgSO_{4} and concentration in vacuo. To a mixture of the thus obtained residue and $\mathrm{Et}_{3} \mathrm{~N}(5.4 \mathrm{~mL}, 38.7 \mathrm{mmol})$ in $t-\mathrm{BuOH}$ $(77 \mathrm{~mL})$ was added a solution of diphenylphosphorylazide $(6.8 \mathrm{~mL}, 31.6$ $\mathrm{mmol})$ in toluene $(23 \mathrm{~mL})$ dropwise at $100^{\circ} \mathrm{C}$. After being stirred at the same temperature for 12 h , the reaction mixture was concentrated and purified by flash chromatography (n-hexane/EtOAc $4: 1$) to afford rac56 as a yellow oil $\left(5.21 \mathrm{~g}, 58 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $1.37(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H}), 1.59-1.68(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H})$, $3.49(\mathrm{~s}, 3 \mathrm{H}), 5.25(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.08-7.33(\mathrm{~m}, 5 \mathrm{H})$.

Quinidine Salt of ($1 S, 2 R, 3 R$)-1-(tert-Butoxycarbonylamino)-2,3-dimethyl-2-phenylcyclopropanecarboxylic Acid (57). A mixture of rac- $56(5.21 \mathrm{~g}, 16.3 \mathrm{mmol})$ and $4 \mathrm{M} \mathrm{NaOH}(16.3 \mathrm{~mL}, 65.2$ $\mathrm{mmol})$ in THF/methanol ($1: 1,66 \mathrm{~mL}$) was stirred at $90^{\circ} \mathrm{C}$ for 12 h . The reaction mixture was acidified with a saturated solution of KHSO_{4} and extracted with EtOAc. The organic layer was dried over MgSO_{4} and concentrated. The residue was treated with quinidine $(5.29 \mathrm{~g}, 16.3$ $\mathrm{mmol})$ in acetone $(63 \mathrm{~mL})$ and the resultant precipitates were collected by filtration to give 57 as fine crystals ($3.73 \mathrm{~g}, 36 \%$ yield). Their quality was good enough, and they were directly used for a single crystal X-ray diffraction analysis: $\mathrm{mp} 236-238{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 1.08(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.33-1.53(\mathrm{~m}, 17 \mathrm{H}), 1.69(\mathrm{~s}, 1 \mathrm{H}), 1.90(\mathrm{dd}, J$ $=13.1,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{q}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.44-2.74(\mathrm{~m}, 3 \mathrm{H}), 2.95-3.07(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 5.02-5.12(\mathrm{~m}$, $2 \mathrm{H}), 5.28(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.04-6.14(\mathrm{~m}, 1 \mathrm{H})$, $7.10-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.38(\mathrm{dd}, J=9.0,2.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.45(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.92$ $(\mathrm{d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.68(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H})$. Anal. $\left(\mathrm{C}_{37} \mathrm{H}_{47} \mathrm{~N}_{3} \mathrm{O}_{6}\right.$. $0.25 \mathrm{H}_{2} \mathrm{O}$) calcd C $70.06 \%, \mathrm{H} 7.55 \%$, N 6.62%; found $70.16 \%, \mathrm{H} 7.37 \%$, N 6.79\%.
(1S,2R,3R)-tert-Butyl 2,3-Dimethyl-1-(2-oxooxazolidine-3-sulfonamido)-2-phenylcyclopropanecarboxylate (58). To a suspension of $57(3.73 \mathrm{~g}, 5.92 \mathrm{mmol})$ in $\mathrm{EtOAc}(50 \mathrm{~mL})$ was added 10% KHSO_{4} until the mixture turned into a clear solution. The organic layer was separated, dried over MgSO_{4}, and concentrated under reduced pressure. To a solution of the thus obtained residue in toluene $(8.9 \mathrm{~mL})$ was added N, N-dimethylformamide di-tert-butyl acetal ($5.69 \mathrm{~mL}, 23.7$ mmol) dropwise at $100^{\circ} \mathrm{C}$ and stirred for 2 h . The mixture was diluted with 5% aqueous NaHCO_{3} solution and extracted with n-hexane/ EtOAc (2:1). The organic layer was washed with brine, dried over MgSO_{4}, and concentrated to give the corresponding t - Bu ester. To a solution of this ester in methanol (11 mL) was added $p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ $(2.25 \mathrm{~g}, 11.8 \mathrm{mmol})$, and the mixture was stirred at room temperature for 12 h . After neutralization with 4 M NaOH , the mixture was concentrated under reduced pressure and extracted with EtOAc . The organic layer was washed with brine, dried over MgSO_{4}, and concentrated to afford the corresponding amine as a yellow oil ($1.30 \mathrm{~g}, 84 \%$ yield). This product was then dissolved in acetonitrile $(7.0 \mathrm{~mL})$, and the resultant solution was added to a mixture of chlorosulfonyl isocyanate ($0.476 \mathrm{~mL}, 5.47$ $\mathrm{mmol})$, 2-chloroethanol ($0.400 \mathrm{~mL}, 5.96 \mathrm{mmol}$), and N-methylmorpholine $(2.19 \mathrm{~mL}, 19.9 \mathrm{mmol})$ in acetonitrile $(7.0 \mathrm{~mL})$. After being stirred at $50^{\circ} \mathrm{C}$ for 2 h , the mixture was acidified with 2 M HCl and extracted with EtOAc . The organic layer was washed with brine, dried over MgSO_{4}, and
concentrated. The thus obtained crude product was purified by flash chromatography (n-hexane/EtOAc $4: 1$) to give 58 as a pale yellow oil $\left(1.77 \mathrm{~g}, 87 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.06$ (s, 9H), 1.49 $(\mathrm{d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.92-4.02(\mathrm{~m}$, $1 \mathrm{H}), 4.15-4.24(\mathrm{~m}, 1 \mathrm{H}), 4.32-4.46(\mathrm{~m}, 2 \mathrm{H}), 6.27(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $7.10-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.33(\mathrm{~m}, 3 \mathrm{H})$.
(1S,2R,3R)-2,3-Dimethyl-1-(8-fluoro-1,2,3,4-tetrahydro-pyrazino[1,2-a]benzimidazole-2-sulfonylamino)-2-phenylcyclopropanecarboxylic Acid (13a). 13a was prepared by coupling of 58 with 8 -fluoro-1,2,3,4-tetrahydropyrazino[1,2-a]benzimidazole ${ }^{29 \mathrm{~b}}$ following the procedures described for 9 a . The crude product was purified by trituration with methanol/ $\mathrm{H}_{2} \mathrm{O}$ to yield 13 a as a white solid (41% yield): mp 202-207 ${ }^{\circ} \mathrm{C} ;[\alpha]^{20}{ }_{\mathrm{D}}+27.85^{\circ}$ (c 0.53 , methanol); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 1.35(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.96(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.73-3.86(\mathrm{~m}, 2 \mathrm{H}), 4.22(\mathrm{t}$, $J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.57(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.08-7.19(\mathrm{~m}, 4 \mathrm{H}), 7.22-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{dd}, J=9.8,2.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.53(\mathrm{dd}, J=8.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.80(\mathrm{~s}, 1 \mathrm{H}), 12.37(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$. Anal. $\left(\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{FN}_{4} \mathrm{O}_{4} \mathrm{~S}\right)$ calcd C 57.63%, H 5.06%, $\mathrm{N} 12.22 \%$; found C 57.55\%, H 5.14\%, N 12.18\%.
(1S,2R,3R)-2.3-Dimethyl-1-(8-fluoro-1,2,3,4-tetrahydropyrido[$\left.3^{\prime}, 4^{\prime}: 4,5\right]$ imidazo[1,2-a]pyridine-2-sulfonylamino)-2phenylcyclopropanecarboxylic Acid (13b). 13b was prepared by coupling of $\mathbf{5 8}$ with $\mathbf{3 8 b}$ following the procedures described for $\mathbf{9 a}$. The crude product was purified by trituration with methanol $/ \mathrm{H}_{2} \mathrm{O}$ to yield $\mathbf{1 3 b}$ as a white solid (76% yield): mp $189-193^{\circ} \mathrm{C} ;[\alpha]^{20}{ }_{\mathrm{D}}+41.29^{\circ}$ $\left(c 0.42, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 1.34(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{t}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H})$, $3.56-3.69(\mathrm{~m}, 2 \mathrm{H}), 4.33(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.99(\mathrm{td}, J=7.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.30(\mathrm{~m}, 2 \mathrm{H})$, $7.38(\mathrm{dd}, J=10.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.35(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.46(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 12.21 (br s, 1 H$)$. Anal. $\left(\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{FN}_{4} \mathrm{O}_{4} \mathrm{~S} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right)$ calcd C 56.52%, H 5.17%, N 11.98%; found C 56.38%, H 5.31%, N 11.86%.
(1S,2R,3R)-2,3-Dimethyl-1-(7-fluoro-1,2,3,4-tetrahydropyrido[$\left.3^{\prime}, 4^{\prime}: 3,4\right]$ pyrazolo[1,5-a]pyridine-2-sulfonylamino)-2-phenylcyclopropanecarboxylic Acid (13c). 13c was prepared by coupling of $\mathbf{5 8}$ with $\mathbf{5 1}$ following the procedure described for $\mathbf{9}$ a. The crude product was purified by trituration with methanol $/ \mathrm{H}_{2} \mathrm{O}$ to yield 13 c as a white solid (84% yield) : mp $194-200^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}+37.0^{\circ}(c 1.1$, methanol); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.30$ (d, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.98(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.75-2.83(\mathrm{~m}, 2 \mathrm{H}), 3.33-3.46$ $(\mathrm{m}, 1 \mathrm{H}), 3.69-3.78(\mathrm{~m}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=15.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.00-7.12(\mathrm{~m}, 3 \mathrm{H}), 7.12-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.32(\mathrm{~m}, 1 \mathrm{H})$, 7.59-7.66 (m, 1H), 8.84-8.91 (m, 1H). Anal. $\left(\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{FN}_{4} \mathrm{O}_{4} \mathrm{~S}\right.$. $0.5 \mathrm{H}_{2} \mathrm{O}$) calcd C $56.52 \%, \mathrm{H} 5.17 \%$, N 11.98%; found C 56.59%, H 5.13\%, N 12.12\%.
(1S,2R,3R)-1-[(R)-4-(5-Cyanothiophen-2-yl)-3-methylpi-perazine-1-sulfonylamino]-2,3-dimethyl-2-phenylcyclopropanecarboxylic Acid (13d). 13d was prepared by coupling of 58 with $\mathbf{3 3 b}$ following the procedures described for $\mathbf{9 a}$. The crude product was purified by trituration with chloroform to yield 13 d as a pale yellow solid (93% yield): mp $128-132{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}+34.6^{\circ}$ (c 1.0, methanol); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 1.12(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.35(\mathrm{~d}$, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{td}, J=11.7$, $3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.99-3.05(\mathrm{~m}, 1 \mathrm{H}), 3.18(\mathrm{td}, J=12.1,3.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.38-3.47(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-4.02(\mathrm{~m}, 1 \mathrm{H}), 6.20$ $(\mathrm{d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=$ $4.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.53($ br s, 1 H$), 12.41$ (br s, 1 H$)$. Anal. $\left(\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2}\right.$. $1.25 \mathrm{CHCl}_{3}$) calcd C 51.81%, H 5.10%, N 10.40%; found C 51.62%, H 5.41%, N 10.60\%.
(1S,2R,3R)-1-[(R)-4-(5-Difluoromethylisoxazol-3-yl)-3-methyl-piperazine-1-sulfonylamino]-2,3-dimethyl-2-phenylcyclopropanecarboxylic Acid (13e). 13e was prepared by coupling of 58 with 33 e following the procedures described for 9 a . The crude product was purified by
trituration with methanol $/ \mathrm{H}_{2} \mathrm{O}$ to yield 13 e as a pale yellow solid (71% yield): mp $174-180^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}+10.1^{\circ}$ (c 0.93, methanol); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.23(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.43(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{td}, J=11.9,3.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.16(\mathrm{dd}, J=11.9,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{td}, J=12.4,3.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.48(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~d}, J=11.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.87-3.95(\mathrm{~m}, 1 \mathrm{H}), 6.18(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H}), 6.58(\mathrm{t}, J=$ $53.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.16-7.27(\mathrm{~m}, 3 \mathrm{H})$. Anal. $\left(\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S} \cdot 0.75 \mathrm{H}_{2} \mathrm{O}\right)$ calcd C 50.64%, H 5.57%, N 11.25%; found C 50.97\%, H 5.46\%, N 11.13\%.

Binding Model. Molecular modeling and visualization were performed using Insight II/Discover software (Accelrys, Inc.). Crystal structures of aggrecanase-2 and MMP-14 were both available in the Protein Data Bank (PDB codes 2RJQ and 1 BQQ , respectively), and their structural information was used to generate the binding models for the inhibitors. Each compound was manually docked into aggrecanase or MMP-14 so that the sulfonylamino portion of the compound was placed in the $\mathrm{S1}^{\prime}$ pocket of enzymes while the carboxylate oxygens bound the zinc atom in a bidentate fashion.

Biological Assays. Recombinant human enzymes of MMP-1, MMP-3, MMP-9, MMP-13, and TACE were purchased from R\&D Systems. Recombinant human enzymes of MMP-14 and aggrecanases (ADAMTS-4, ADAMTS-5) were purchased from Calbiochem and ImmunoDiagnostics, respectively. MMP-1 and MMP-14 assays were performed by incubating $10 \mu \mathrm{M}$ fluorogenic substrate MOCAc-Lys-Pro-Leu-Gly-Leu-A2pr(Dnp)-Ala-Arg- NH_{2} (Peptide Institute) with $20 \mathrm{ng} /$ mL rh-MMP-1 or rh-MMP-14 along with various concentrations of inhibitor in the buffer (100 mM Tris- $\mathrm{HCl}, \mathrm{pH} 7.5,150 \mathrm{mM} \mathrm{NaCl}$, $10 \mathrm{mM} \mathrm{CaCl}_{2}$, and 0.05% Brij-35). MMP-3 assay was performed by incubating $10 \mu \mathrm{M}$ fluorogenic substrate MOCAc-Arg-Pro-Lys-Pro-Val-Glu-Nva-Trp-Arg-Lys(Dnp)- NH_{2} (Peptide Institute) with $40 \mathrm{ng} / \mathrm{mL}$ rh-MMP-3 along with various concentrations of inhibitor in the buffer (100 mM Tris- $\mathrm{HCl}, \mathrm{pH} 7.5,150 \mathrm{mM} \mathrm{NaCl}, 10 \mathrm{mM} \mathrm{CaCl} 2$, and 0.05% Brij-35). MMP-9 assay was performed by incubating $10 \mu \mathrm{M}$ fluorogenic substrate MOCAc-Pro-Leu-Gly-Leu-A2pr(Dnp)-Ala-Arg-NH2 (Peptide Institute) with $4 \mathrm{ng} / \mathrm{mL}$ rh-MMP-9 along with various concentrations of inhibitor in the buffer (100 mM Tris- $\mathrm{HCl}, \mathrm{pH} 7.5,150 \mathrm{mM} \mathrm{NaCl}$, $10 \mathrm{mM} \mathrm{CaCl}_{2}$, and 0.05% Brij-35). MMP-13 assay was performed by incubating $5 \mu \mathrm{M}$ fluorogenic substrate 7-MCA-Pro-CHA-Gly-NVal-His-Ala-DPA (Enzyme Systems Products) with $40 \mathrm{ng} / \mathrm{mL}$ rh-MMP13 along with various concentrations of inhibitor in the buffer (100 mM Tris- $\mathrm{HCl}, \mathrm{pH} 7.5,150 \mathrm{mM} \mathrm{NaCl}, 10 \mathrm{mM} \mathrm{CaCl} \mathrm{C}_{2}$, and 0.05% Brij-35). TACE assay was performed by incubating $10 \mu \mathrm{M}$ fluorogenic substrate MCA-Pro-Leu-Ala-Gln-Ala-Val-Dpa-Arg-Ser-Ser-Ser-Arg- NH_{2} (Calbiochem) with $80 \mathrm{ng} / \mathrm{mL}$ rh-TACE along with various concentrations of inhibitor in the buffer (100 mM Tris- HCl , pH 7.5, $150 \mathrm{mM} \mathrm{NaCl}, 10 \mathrm{mM} \mathrm{CaCl} 2$, and 0.05% Brij-35). Aggrecanase assay was performed by incubating $120 \mu \mathrm{M}$ fluorogenic substrate Abz-Thr-Glu-Gly-Glu-Ala-Arg-Gly-Ser-Val-Ile-Dap(Dnp)-Lys-LysNH_{2} (AnaSpec) with $1 \mu \mathrm{~g} / \mathrm{mL}$ rh-aggrecanase-1 (ADAMTS-4) or rh-aggrecanase-2 (ADAMTS-5) along with various concentrations of inhibitor in the buffer (50 mM Tris- $\mathrm{HCl}, \mathrm{pH} 7.5,100 \mathrm{mM} \mathrm{NaCl}$, and $10 \mathrm{mM} \mathrm{CaCl} 2)$. Each enzyme was pretreated with inhibitor at $25^{\circ} \mathrm{C}$ for 15 min , and the enzymatic reaction was initiated by an addition of the substrate at $37{ }^{\circ} \mathrm{C}$. The increase in fluorescence $\left(\lambda_{\mathrm{ex}}=325 \mathrm{~nm}, \lambda_{\mathrm{em}}=\right.$ 405 nm) due to cleavage of the substrate was monitored with a BMG FLUOstar fluorescence plate reader after 150 and 60 min for aggrecanases and the others, respectively. IC_{50} of each inhibitor was calculated with Excel software, using three points in the central linear range of fluorescence inhibition.

In Vivo Pharmacokinetics. The pharmacokinetic profile was investigated in SD rats following a single dose given intravenously (iv) and orally (po). Two rats were treated with the compound. Blood samples of each rat were collected at $0.08,0.17,0.25,0.50,1,2,4,8,24 \mathrm{~h}$
following oral dosing ($10 \mathrm{mg} / \mathrm{kg}$) and at $0.50,1,2,4,8,24 \mathrm{~h}$ following iv dosing $(1 \mathrm{mg} / \mathrm{kg})$. Samples were centrifuged at 10000 rpm for 5 min and the plasma collected and stored at $-20^{\circ} \mathrm{C}$ until analysis. Samples were analyzed by $\mathrm{LC}-\mathrm{MS} / \mathrm{MS}$ technique. The pharmacokinetic parameters were derived by noncompartmental analysis.

■ ASSOCIATED CONTENT

(5) Supporting Information. Crystallographic data for compound 57. This material is available free of charge via the Internet at http://pubs.acs.org.

- AUTHOR INFORMATION

Corresponding Author

*For M.S.: phone, (+) 81-72-681-9700; fax, (+) 81-72-6819725; e-mail, makoto.shiozaki@jt.com. For T.I.: phone, $(+)$ 81-72-681-9700; fax, (+) 81-72-681-9725; e-mail, takashi.inaba@jt. com.

- ACKNOWLEDGMENT

We thank Yasushi Ono and Kenji Fukuda for analytical support. We thank Tamotsu Negoro for PK data. We also thank Dr. Jun-ichi Haruta and Dr. Hiromasa Hashimoto for support.

ABBREVIATIONS USED

OA, osteoarthritis; ADAMTS-4, a disintegrin and metalloprotease with thrombospondin motifs-4; ADAMTS-5, a disintegrin and metalloprotease with thrombospondin motifs-5; PK, pharmacokinetic; MMP, matrix metalloprotease; TACE, tumor necrosis factor α-converting enzyme; SAR, structure-activity relationship; CYP, cytochrome P450; DMORD, disease modifying osteoarthritis drug

- REFERENCES

(1) (a) Felson, D. T. Osteoarthritis of the knee. N. Engl. J. Med. 2006, 354, 841-848. (b) Lane, N. E. Osteoarthritis of the hip. N. Engl. J. Med. 2007, 357, 1413-1421.
(2) (a) Tortorella, M. D.; Burn, T. C.; Pratta, M. A.; Abbaszade, I.; Hollis, J. M.; Liu, R.; Rosenfeld, S. A.; Copeland, R. A.; Decicco, C. P.; Wynn, R.; Rockwell, A.; Yang, F.; Duke, J. L.; Solomon, K.; George, H.; Bruckner, R.; Nagase, H.; Itoh, Y.; Ellis, D. M.; Ross, H.; Wiswall, B. H.; Murphy, K.; Hillman, M. C., Jr.; Hollis, G. F.; Newton, R. C.; Magolda, R. L.; Trzaskos, J. M.; Arner, E. C. Purification and cloning of aggrecanase-1: a member of the ADAMTS family of proteins. Science 1999, 284, 1664-1666. (b) Abbaszade, I.; Liu, R.-Q.; Yang, F.; Rosenfeld, S. A.; Ross, O. H.; Link, J. R.; Ellis, D. M; Tortorella, M. D.; Pratta, M. A.; Hollis, J. M.; Wynn, R.; Duke, J. L.; George, H. J.; Hillman, M. C., Jr.; Murphy, K.; Wiswall, B. H.; Copeland, R. A.; Decicco, C. P.; Bruckner, R.; Nagase, H.; Itoh, Y.; Newton, R. C.; Magolda, R. L.; Trzaskos, J. M.; Burn, T. C. Cloning and characterization of ADAMTS11, an aggrecanase from the ADAMTS family. J. Biol. Chem. 1999, 274, 23443-23450.
(3) (a) Sandy, J. D.; Boynton, R. E.; Flannery, C. R. Analysis of the catabolism of aggrecan in cartilage explants by quantitation of peptides from the three globular domains. L. Biol. Chem. 1991, 266, 8198-8205. (b) Lohamnder, L. S.; Neame, P. J.; Sandy, J. D. The structure of aggrecan fragments in human synovial fluid. Evidence that aggrecanase mediates cartilage degradation in inflammatory joint disease, joint injury, and osteoarthritis. Arthritis Rheum. 1993, 36, 1214-1222. (c) Lark, M. W.; Gordy, J. T.; Weidner, J. R.; Ayala, J.; Kimura, J. H.; Williams, H. R.; Mumford, R. A.; Flannery, C. R.; Carlson, S. S. Cell-mediated catabolism of aggrecan. Evidence that cleavage at the "aggrecanase" site
(Glu373-Ala374) is a primary event in proteolysis of the interglobular domain. I. Biol. Chem. 1995, 270, 2550-2556. (d) Arner, E. C.; Hughes, C. E.; Decicco, C. P.; Caterson, B.; Tortorella, M. D. Cytokine-induced cartilage proteoglycan degradation is mediated by aggrecanase. Osteoarthritis Cartilage 1998, 6, 214-228. (e) Van Meurs, J. B. J.; Van Lent, P. L. E. M.; Holthuysen, A. E. M.; Singer, I. I.; Bayne, E. K.; Van Den Berg, W. B. Kinetics of aggrecanase and metalloproteinase-induced neoepitopes in various stages of cartilage destruction in murine arthritis. Arthritis Rheum. 1999, 42, 1128-1139. (f) Arner, E. C.; Pratta, M. A.; Trzaskos, J. M.; Decicco, C. P.; Tortorella, M. D. Generation and characterization of aggrecanase: A soluble, cartilage-derived aggrecandegrading activity. I. Biol. Chem. 1999, 274, 6594-6601.
(4) Mankin, H. J.; Lippiello, L. Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. J. Bone Jt. Surg. 1970, 52A, 424-434.
(5) (a) Tortorella, M. D.; Malfait, F.; Barve, R. A.; Shieh, H.-S.; Malfait, A.-M. A review of the ADAMTS family, pharmaceutical targets of the future. Curr. Pharm. Des. 2009, 15, 2359-2374. (b) Alcaraz, M. J.; Megías, J.; García-Arnandis, I.; Clérigues, V.; Guillén, M. I. New molecular targets for the treatment of osteoarthritis. Biochem. Pharmacol. 2010, 80, 13-21.
(6) (a) Glasson, S. S.; Askew, R.; Sheppard, B.; Carito, B.; Blanchet, T.; Ma, H.-L.; Flannery, C. R.; Peluso, D.; Kanki, K.; Yang, Z.; Majumdar, M. K.; Morris, E. A. Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature 2005, 434, 644-648. (b) Stanton, H.; Rogerson, F. M.; East, C. J.; Golub, S. B.; Lawlor, K. E.; Meeker, C. T.; Little, C. B.; Last, K.; Farmer, P. J.; Campbell, I. K.; Fourie, A. M.; Fosang, A. J. ADAMTS5 is the major aggrecanase in mouse cartilage in vivo and in vitro. Nature 2005, 434, 648-652.
(7) (a) Flannery, C. R. MMPs and ADAMTs: functional studies. Front. Biosci. 2006, 11, 544-569. (b) Fosang, A. J.; Rogerson, F. M.; East, C. J.; Stanton, H. ADAMTS-5: the story so far. Eur. Cells Mater. 2008, 15, 11-26. (c) Fosang, A. J.; Rogerson, F. M. Identifying the human aggrecanase. Osteoarthritis Cartilage 2010, 18, 1109-1116.
(8) (a) Yao, W.; Wasserman, Z. R.; Chao, M.; Reddy, G.; Shi, E.; Liu, R.-Q.; Covington, M. B.; Arner, E. C.; Pratta, M. A.; Tortorella, M.; Magolda, R. L.; Newton, R.; Qian, M.; Ribadeneira, M. D.; Christ, D.; Wexler, R. R.; Decicco, C. P. Design and synthesis of a series of $(2 R)-N 4-$ hydroxy-2-(3-hydroxybenzyl)-N1-[(1S,2R)-2-hydroxy-2,3-dihydro- $1 H$ -inden-1-yl] butanediamide derivatives as potent, selective, and orally bioavailable aggrecanase inhibitors. I. Med. Chem. 2001, 44, 3347-3350. (b) Tortorella, M. D.; Tomasselli, A. G.; Mathis, K. J.; Schnute, M. E.; Woodard, S. S.; Munie, G.; Williams, J. M.; Caspers, N.; Wittwer, A. J.; Malfait, A.-M.; Shieh, H.-S. Structural and inhibition analysis reveals the mechanism of selectivity of a series of aggrecanase inhibitors. J. Biol. Chem. 2009, 284, 24185-24191.
(9) (a) Liu, R.-Q.; Trzaskos, J. M. Aggrecanase: the family and its inhibitors. Curr. Med. Chem.: Anti-Inflammatory Anti-Allergy Agents 2005, 4, 251-264. (b) Yao, W.; Chao, M.; Wasserman, Z. R.; Liu, R.Q.; Covington, M. B.; Newton, R.; Christ, D.; Wexler, R. R.; Decicco, C. P. Potent Pl^{\prime} biphenylmethyl substituted aggrecanase inhibitors. Bioorg. Med. Chem. Lett. 2002, 12, 101-104. (c) Cherney, R. J.; Mo, R.; Meyer, D. T.; Wang, L.; Yao, W.; Wasserman, Z. R.; Liu, R.-Q.; Covington, M. B.; Tortorella, M. D.; Arner, E. C.; Qian, M.; Christ, D. D.; Trzaskos, J. M.; Newton, R. C.; Magolda, R. L.; Decicco, C. P. Potent and selective aggrecanase inhibitors containing cyclic P1 substituents. Bioorg. Med. Chem. Lett. 2003, 13, 1297-1300. (d) Noe, M. C.; Snow, S. L.; Wolf-Gouveia, L. A.; Mitchell, P. G.; Lopresti-Morrow, L.; Reeves, L. M.; Yocum, S. A.; Liras, J. L.; Vaughn, M. 3-Hydroxy-4-arylsulfonyltetrahydropyranyl-3-hydroxamic acids are novel inhibitors of MMP-13 and aggrecanase. Bioorg. Med. Chem. Lett. 2004, 14, 4727-4730. (e) Noe, M. C.; Natarajan, V.; Snow, S. L.; Mitchell, P. G.; Lopresti-Morrow, L.; Reeves, L. M.; Yocum, S. A.; Carty, T. J.; Barberia, J. A.; Sweeney, F. J.; Liras, J. L.; Vaughn, M.; Hardink, J. R.; Hawkins, J. M.; Tokar, C. Discovery of 3,3-dimethyl-5-hydroxypipecolic hydroxamate-based inhibitors of aggrecanase and MMP-13. Bioorg. Med. Chem. Lett. 2005, 15, 2808-2811. (f) Xiang, J. S.; Hu, Y.; Rush, T. S.;

Thomason, J. R.; Ipek, M.; Sum, P.-E.; Abrous, L.; Sabatini, J. J.; Georgiadis, K.; Reifenberg, E.; Majumdar, M.; Morris, E. A.; Tam, S. Synthesis and biological evaluation of biphenylsulfonamide carboxylate aggrecanase-1 inhibitors. Bioorg. Med. Chem. Lett. 2006, 16, 311-316.(g) Sum, P.-E.; How, D. B.; Sabatini, J. J.; Xiang, J. S.; Ipec, M.; Feyfant, E. Glutamate Aggrecanase Inhibitors. PCT Int. Appl. WO2007008994, 2007. (h) Hopper, D. W.; Vera, M. D.; How, D.; Sabatini, J.; Xiang, J. S.; Ipek, M.; Thomason, J.; Hu, Y.; Feyfant, E.; Wang, Q.; Georgiadis, K. E.; Reifenberg, E.; Sheldon, R. T.; Keohan, C. C.; Majumdar, M. K.; Morris, E. A.; Skotnicki, J.; Sum, P.-E. Synthesis and biological evaluation of ((4-keto)-phenoxy)methyl biphenyl-4-sulfonamides: a class of potent ag-grecanase-1 inhibitors. Bioorg. Med. Chem. Lett. 2009, 19, 2487-2491.
(10) (a) Bursavich, M. G.; Gilbert, A. M.; Lombardi, S.; Georgiadis, K. E.; Reifenberg, E.; Flannery, C. R.; Morris, E. A. Synthesis and evaluation of aryl thioxothiazolidinone inhibitors of ADAMTS-5 (aggrecanase-2). Bioorg. Med. Chem. Lett. 2007, 17, 1185-1188. (b) Gilbert, A. M.; Bursavich, M. G.; Lombardi, S.; Georgiadis, K. E.; Reifenberg, E.; Flannery, C. R.; Morris, E. A. 5-((1H-Pyrazol-4-yl)methylene)-2-thioxothiazolidin-4-one inhibitors of ADAMTS-5. Bioorg. Med. Chem. Lett. 2007, 17, 1189-1192. (c) Bursavich, M. G.; Gilbert, A. M.; Lombardi, S.; Georgiadis, K. E.; Reifenberg, E.; Flannery, C. R.; Morris, E. A. 5^{\prime}-Phenyl-3'H-spiro[indoline-3, $2^{\prime}-[1,3,4]$ thia-diazol]-2-one inhibitors of ADAMTS-5 (aggrecanase-2). Bioorg. Med. Chem. Lett. 2007, 17, 5630-5633. (d) Gilbert, A. M.; Bursavich, M. G.; Lombardi, S.; Georgiadis, K. E.; Reifenberg, E.; Flannery, C. R.; Morris, E. A. N-8-Hydroxy-5-substituted-quinolin-7-yl)(phenyl)methyl)-2-phe-nyloxy/amino-acetamide inhibitors of ADAMTS-5 (aggrecanase-2). Bioorg. Med. Chem. Lett. 2008, 18, 6454-6457. (e) Rienzo, F. D.; Saxena, P.; Filomia, F.; Caselli, G.; Colace, F.; Stasi, L.; Giordani, A.; Menziani, M. C. Progress towards the identification of new aggrecanase inhibitors. Curr. Med. Chem. 2009, 16, 2395-2415.
(11) Cappelli, A.; Nannicini, C.; Valenti, S.; Giuliani, G.; Anzini, M.; Mennuni, M.; Giordani, A.; Caselli, G.; Stasi, L. P.; Makovec, F.; Giorgi, G.; Vomero, S. Design, synthesis, and preliminary biological evaluation of pyrrolo[3,4-c] quinolin-1-one and oxoisoindoline derivatives as aggrecanase inhibitors. ChemMedChem 2010, 5, 739-748.
(12) (a) Shiozaki, M.; Maeda, K.; Miura, T.; Ogoshi, Y.; Haas, J.; Fryer, A. M.; Laird, E. R.; Littmann, N. M.; Andrews, S. W.; Josey, J. A.; Mimura, T.; Shinozaki, Y.; Yoshiuchi, H.; Inaba, T. Novel N-substituted 2-phenyl-1-sulfonylamino-cyclopropanecarboxylates as selective ADAMTS-5 (aggrecanase-2) inhibitors. Bioorg. Med. Chem. Lett. 2009, 19, 1575-1580. (b) Shiozaki, M.; Imai, H.; Maeda, K.; Miura, T.; Yasue, K.; Suma, A.; Yokota, M.; Ogoshi, Y.; Haas, J.; Fryer, A. M.; Laird, E. R.; Littmann, N. M.; Andrews, S. W.; Josey, J. A.; Mimura, T.; Shinozaki, Y.; Yoshiuchi, H.; Inaba, T. Synthesis and SAR of 2-phenyl-1-sulfonylaminocyclopropanecarboxylates as ADAMTS-5 (aggrecanase-2) inhibitors. Bioorg. Med. Chem. Lett. 2009, 19, 6213-6217.
(13) Coussens, L. M.; Fingleton, B.; Matrisian, L. M. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 2002, 295, 2387-2392.
(14) (a) Holmbeck, K.; Bianco, P.; Caterina, J.; Yamada, S.; Kromer, M.; Kuznetsov, S.; Mankani, M.; Gehron Robey, P.; Poole, A.; Pidoux, I. MT1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover. Cell 1999, 99, 81-92. (b) Peterson, J. T. The importance of estimating the therapeutic index in the development of matrix metalloproteinase inhibitors. Cardiovasc. Res. 2006, 69, 677-687.
(15) (a) Natchus, M. G.; Bookland, R. G.; De, B.; Almstead, N. G.; Pikul, S.; Janusz, M. J.; Heitmeyer, S. A.; Hookfin, E. B.; Hsieh, L. C.; Dowty, M. E.; Dietsch, C. R.; Patel, V. S.; Garver, S. M.; Gu, F.; Pokross, M. E.; Mieling, G. E.; Baker, T. R.; Foltz, D. J.; Peng, S. X.; Bornes, D. M.; Strojnowski, M. J.; Taiwo, Y. O. Development of new hydroxamate matrix metalloproteinase inhibitors derived from functionalized 4-aminoprolines. I. Med. Chem. 2000, 43, 4948-4963. (b) Reiter, L. A.; Robinson, R. P.; McClure, K. F.; Jones, C. S.; Reese, M. R.; Mitchell, P. G.; Otterness, I. G.; Bliven, M. L.; Liras, J.; Cortina, S. R.; Donahue, K. M.; Eskra, J. D.; Griffiths, R. J.; Lame, M. E.; Lopez-Anaya, A.; Martinelli, G. J.; McGahee, S. M.; Yocum, S. A.; Lopresti-Morrow, L. L.;

Tobiassen, L. M.; Vaughn-Bowser, M. L. Pyran-containing sulfonamide hydroxamic acids: potent MMP inhibitors that spare MMP-1. Bioorg. Med. Chem. Lett. 2004, 14, 3389-3395. (c) Nuti, E.; Casalini, F.; Avramova, S. I.; Santamaria, S.; Cercignani, G.; Marinelli, L.; La Pietra, V.; Novellino, E.; Orlandini, E.; Nencetti, S.; Tuccinardi, T.; Martinelli, A.; Lim, N.-H.; Visse, R.; Nagase, H.; Rossello, A. N-O-Isopropyl sulfonamido-based hydroxamates: design, synthesis and biological evaluation of selective matrix metalloproteinase-13 inhibitors as potential therapeutic agents for osteoarthritis. J. Med. Chem. 2009, 52, 4757-4773.
(16) Rao, B. G. Recent developments in the design of specific matrix metalloptoteinase inhibitors aided by structural and computational studies. Curr. Pharm. Des. 2005, 11, 295-322.
(17) Winum, J.-Y.; Scozzafava, A.; Montero, J.-L.; Supuran, C. T. The sulfamide motif in the design of enzyme inhibitors. Expert Opin. Ther. Pat. 2006, 16, 27-47.
(18) Maity, P.; König, B. Synthesis and structure of 1,4-dipiperazino benzenes: chiral terphenyl-type peptide helix mimetics. Org. Lett. 2008, 10, 1473-1476.
(19) Shieh, H. S.; Mathis, K. J.; Williams, J. M.; Hills, R. L.; Wiese, J. F.; Benson, T. E.; Kiefer, J. R.; Marino, M. H.; Carroll, J. N.; Leone, J. W.; Malfait, A. M.; Arner, E. C.; Tortorella, M. D.; Tomasselli, A. High resolution crystal structure of the catalytic domain of ADAMTS-5 (aggrecanase-2). I. Biol. Chem. 2008, 283, 1501-1507.
(20) Fernandez-Catalan, C.; Bode, W.; Huber, R.; Turk, D.; Calvete, J. J.; Lichte, A.; Tschesche, H.; Maskos, K. Crystal structure of the complex formed by the membrane type 1-matrix metalloproteinase with the tissue inhibitor of metalloproteinases-2, the soluble progelatinase A receptor. EMBO I. 1998, 17, 5238-5248.
(21) Wei, L.; Jianchang, L.; Yuchuan, W.; Junjun, W.; Rajeev, H.; Kristina, C.; Iain, M.; Joel, B.; Paul, M.; Franklin, S.; Xin, X.; Steve, T.; Samuel, J. G.; Cara, W.; Joseph, S.; Tarek, S. M. A Selective matrix metalloprotease 12 inhibitor for potential treatment of chronic obstructive pulmonary disease (COPD): discovery of (S)-2-(8-(methoxycarbonylamino) dibenzo[$b, d]$ furan-3-sulfonamido)-3-methylbutanoic acid (MMP408). L. Med. Chem. 2009, 52, 1799-1802.
(22) Kostyuk, A. S.; Knyaz'kov, K. A.; Ponomarev, S. V.; Lutsenko, I. F. 1,3-Dipolar cycloaddition of diazomethane to organosilyl-, -germyland -stannyl-substituted alkoxyacetylenes. Zh. Obshch. Khim. 1985, 55, 2088-2090.
(23) (a) Craig, P. N. In Comprehensive Medicinal Chemistry; Drayton, C. J., Ed.; Pergamon Press: New York, 1991; Vol. 8. (b) Brown, E. G. In Ring Nitrogen and Key Biomolecules; Kluwer Academic Press: Boston, MA, 1998. (c) Negwar, M. In Organic-Chemical Drugs and Their Synonyms: (An International Survey), 7th ed.; Akademie: Berlin, 1994. (d) Li, J.-J. In Name Reactions in Heterocyclic Chemistry; John Wiley \& Sons: Hoboken, NJ, 2005.
(24) (a) Löber, S.; Ortner, B.; Bettinetti, L.; Hubner, H.; Gmeiner, P. Analogs of the dopamine D4 receptor ligand FAUC 113 with planar- and central-chirality. Tetrahedron: Asvmmetry 2002, 13, 2303-2310.(b) Smith, B.; Tsai, J.; Chen, R. Preparation of N-Phenyl-piperazine Derivatives and Methods of Prophylaxis or Treatment of 5-HT2C Receptor Associated Diseases. PCT Int. Appl. WO 2005016902, 2005.
(25) For the preparation of 27a, see the following: Wilson, D.; Fanning, L. T. D.; Sheth, U.; Martinborough, E.; Termin, A.; Neubert, T.; Zimmermann, N.; Knoll, T.; Whitney, T.; Kawatkar, A.; Lehsten, D.; Stamos, D.; Zhou, J.; Arumugam, V.; Gutierrez, C. Heterocyclic Derivatives as Modulators of Ion Channels and Their Preparation, Pharmaceutical Compositions and Use in the Treatment of Diseases. PCT Int. Appl. WO 2007075895, 2007.
(26) Chiarino, D.; Napoletano, M.; Sala, A. 1,3-Dipolar-cycloaddition synthesis of 3-bromo-5-substituted isoxazoles, useful intermediates for the preparation of pharmacologically active compounds. J. Heterocycl. Chem. 1987, 24, 43-46.
(27) Sugai, S.; Sato, K.; Kataoka, K.; Iwasaki, Y.; Tomita, K. Studies on isoxazoles. XV. Syntheses of 3-aminoisoxazole derivatives. Chem. Pharm. Bull. 1984, 32, 530-537.
(28) Fedorov, Y. V.; Fedorova, O. A.; Andryukhina, E. N.; Gromov, S. P.; Alfimov, M. V.; Kuzmina, L. G.; Churakov, A. V.; Howard, J. A. K.;

Aaron, J.-J. Ditopic complex formation of the crown-containing 2-styrylbenzothiazole. New J. Chem. 2003, 27, 280-288.
(29) (a) Adams, D. R.; Bentley, J. M.; Davidson, J.; Duncton, M. A. J.; Porter, R. H. P. Pirazino(aza)indole derivatives. PCT Int. Appl. WO 2000044753, 2000. (b) Matrick, H.; Day, A. R. Syntheses of 1,2,3,4Tetrahydropyrazino $[1,2-a]$ benzimidazoles and 3-Carbethoxy-3-phenyl-1,2,3,4-tetrahydropyrido[1,2-a]benzimidazole. J. Org. Chem. 1961, 26, 1511-1514. (c) Schumacher, R. W.; Davidson, B. S. Synthesis of didemnolines $\mathrm{A}-\mathrm{D}, \mathrm{N} 9$-substituted β-carboline alkaloids from the marine ascidian Didemnum sp. Tetrahedron 1999, 55, 935-942.
(30) Eckhardt, M.; Hauel, N.; Langkopf, E.; Himmelsbach, F. Synthesis of 2-bromo-7-methyl-3,5-dihydro-imidazo[4,5-d]pyridazin4 -one and 3 -alkyl-2-bromo-3,5-dihydro-imidazo[4,5-d] pyridazin-4-one and their selective elaboration. Tetrahedron Lett. 2008, 49, 1931-1934.
(31) Nguyen, H. N.; Wang, Z. J. Novel preparation of functionalized iodotetrahydronaphthyridine, iodoazaindoline, and iodotetrahydropyridoazepine systems. Tetrahedron Lett. 2007, 48, 7460-7463.
(32) Johnston, K. A.; Allcock, R. W.; Jiang, Z.; Collier, I. D.; Blakli, H.; Rosair, G. M.; Bailey, P. D.; Morgan, K. M.; Kohno, Y.; Adams, D. R. Concise routes to pyrazolo[1,5-a]pyridin-3-yl pyridazin-3-ones. Org. Biomol. Chem. 2008, 6, 175-186.
(33) Kohno, Y.; Ando, N.; Ochiai, K. Pyrazolopyridine-4-yl-pyrazolone Derivative, Addition Salt Thereof and Phosphodiesterase Inhibitor Containing the Same as Active Ingredient. PCT Int. Appl. WO 2008129624, 2008.
(34) Hauptmann, H.; Mader, M. Preparation of 2-alkynals and 1 -alkynyl ketones from lithium acetylenides and carboxylic acid esters. Sunthesis 1978, 4, 307-309.
(35) Inaba, T.; Haas, J.; Shiozaki, M.; Littman, N. M.; Yasue, K.; Andrews, S. W.; Sakai, A.; Fryer, A. M.; Matsuo, T.; Laird, E. R.; Suma, A.; Shinozaki, Y.; Hori, Y.; Imai, H.; Negoro, T. Preparation of Cyclopropane Amine Derivatives as Aggrecanase and MMP Inhibitors. PCT Int. Appl. WO 2005058884, 2005.
(36) Ohishi, J. A new cyclopropanation method mediated by organosulfur compounds. Svithesis 1980, 9, 690-691.
(37) Hellio Le Graverand-Gastineau, M.-P. OA clinical trials: current targets and trials for OA. Choosing molecular targets: What have we learned and where we are headed? Osteoarthritis Cartilage 2009, 17, 1393-1401.

NOTE ADDED AFTER ASAP PUBLICATION

After this paper was published online March 21, 2011, a misspelling was corrected in the author list for author Takayuki Yamasaki. The revised version was published March 23, 2011.

[^0]: Received: December 20, 2010
 Published: March 21, 2011

